login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029083
Expansion of 1/((1-x)(1-x^4)(1-x^10)(1-x^11)).
0
1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9, 9, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 29, 31, 34, 36, 39, 41, 44, 46, 49, 51, 55, 58, 62, 65, 70, 73, 77, 80, 85, 88, 93, 97, 103, 107, 113, 118, 124, 128
OFFSET
0,5
COMMENTS
Number of partitions of n into parts 1, 4, 10 and 11. - Ilya Gutkovskiy, May 19 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 1, -1, 0, 0, 0, 0, 1, 0, -1, 0, -1, 0, 1, 0, 0, 0, 0, -1, 1, 0, 0, 1, -1).
FORMULA
a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=2, a(5)=2, a(6)=2, a(7)=2, a(8)=3, a(9)=3, a(10)=4, a(11)=5, a(12)=6, a(13)=6, a(14)=7, a(15)=8, a(16)=9, a(17)=9, a(18)=10, a(19)=11, a(20)=13, a(21)=14, a(22)=16, a(23)=17, a(24)=19, a(25)=20, a(n)=a(n-1)+a(n-4)-a(n-5)+a(n-10)-a(n-12)- a(n-14)+ a(n-16)- a(n-21)+a(n-22)+a(n-25)-a (n-26). - Harvey P. Dale, Dec 22 2013
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^4)(1-x^10)(1-x^11)), {x, 0, 90}], x] (* or *) LinearRecurrence[{1, 0, 0, 1, -1, 0, 0, 0, 0, 1, 0, -1, 0, -1, 0, 1, 0, 0, 0, 0, -1, 1, 0, 0, 1, -1}, {1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9, 9, 10, 11, 13, 14, 16, 17, 19, 20}, 90] (* Harvey P. Dale, Dec 22 2013 *)
CROSSREFS
Sequence in context: A173777 A140436 A236916 * A249040 A153683 A275882
KEYWORD
nonn
AUTHOR
STATUS
approved