|
|
A325622
|
|
Number of integer partitions of n whose reciprocal factorial sum is the reciprocal of an integer.
|
|
7
|
|
|
1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 5, 4, 4, 3, 3, 4, 6, 3, 4, 5, 5, 5, 6, 3, 7, 6, 5, 6, 6, 6, 5, 6, 8, 5, 7, 5, 4, 8, 7, 7, 7, 7, 9, 9, 9, 10, 12, 6, 12, 8, 10, 7, 14, 10, 8, 11, 11, 12, 11, 10, 10, 12, 14
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.
|
|
LINKS
|
|
|
EXAMPLE
|
The initial terms count the following partitions:
1: (1)
2: (2)
3: (3)
4: (4)
4: (2,2)
5: (5)
6: (6)
6: (3,3)
7: (7)
8: (8)
8: (4,4)
9: (9)
9: (5,4)
9: (3,3,3)
10: (10)
10: (5,5)
11: (11)
11: (4,4,3)
11: (3,3,3,2)
12: (12)
12: (6,6)
12: (4,4,4)
|
|
MAPLE
|
f:= proc(n) nops(select(proc(t) local i; (1/add(1/i!, i=t))::integer end proc, combinat:-partition(n))) end proc:
|
|
MATHEMATICA
|
Table[Length[Select[IntegerPartitions[n], IntegerQ[1/Total[1/(#!)]]&]], {n, 30}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|