login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A373461
a(n) = s - t where s = ceiling(sqrt(n*i)), t = sqrt(m), and m = s^2 mod n, for the smallest positive integer i for which m is square.
2
1, 2, 1, 2, 1, 2, 3, 2, 3, 4, 5, 2, 7, 8, 3, 4, 9, 6, 11, 4, 3, 14, 15, 4, 5, 16, 3, 6, 19, 6, 21, 4, 9, 24, 5, 6, 25, 26, 9, 4, 29, 6, 31, 12, 5, 34, 35, 6, 7, 10, 9, 14, 39, 12, 5, 8, 9, 44, 45, 6, 47, 48, 7, 8, 5, 12, 51, 20
OFFSET
1,2
COMMENTS
This is "s - t" in Hart's factoring algorithm.
The quantities found have s^2 - t^2 = (s-t)*(s+t) = n*i when n >= 3 and Hart notes that g = gcd(s-t, n) is a nontrivial factor of n (when n is composite).
REFERENCES
S. S. Wagstaff, Jr., The Joy of Factoring, AMS, 2013, pages 119-120.
LINKS
William B. Hart, A One Line Factoring Algorithm, J. Aust. Math. Soc. 92 (2012), 61-69.
EXAMPLE
For n=9, i=1, s=ceiling(sqrt(9*1))=3 and m=0 then s-floor(sqrt(m))=3-0=3, so a(9)=3.
Also gcd(9, 3) gives a divisor of 3.
PROG
(Python)
from sympy.ntheory.primetest import is_square
from sympy.core.power import isqrt
A003059 = lambda n: isqrt((n)-1)+1
def a(n):
i = 1
while True:
s = A003059(n*i)
if is_square(m:=pow(s, 2, n)):
return s-isqrt(m)
i+=1
print([a(n) for n in range(1, 69)])
(PARI)
a(n) = my(i=1, s, t); while(!issquare((s=sqrtint((n*i)-1)+1)^2 % n, &t), i++); s-t;
CROSSREFS
Sequence in context: A325622 A060145 A358997 * A257806 A035391 A242552
KEYWORD
nonn
AUTHOR
Darío Clavijo, Jun 06 2024
STATUS
approved