OFFSET
1,2
COMMENTS
This is "s - t" in Hart's factoring algorithm.
The quantities found have s^2 - t^2 = (s-t)*(s+t) = n*i when n >= 3 and Hart notes that g = gcd(s-t, n) is a nontrivial factor of n (when n is composite).
REFERENCES
S. S. Wagstaff, Jr., The Joy of Factoring, AMS, 2013, pages 119-120.
LINKS
William B. Hart, A One Line Factoring Algorithm, J. Aust. Math. Soc. 92 (2012), 61-69.
EXAMPLE
For n=9, i=1, s=ceiling(sqrt(9*1))=3 and m=0 then s-floor(sqrt(m))=3-0=3, so a(9)=3.
Also gcd(9, 3) gives a divisor of 3.
PROG
(Python)
from sympy.ntheory.primetest import is_square
from sympy.core.power import isqrt
A003059 = lambda n: isqrt((n)-1)+1
def a(n):
i = 1
while True:
s = A003059(n*i)
if is_square(m:=pow(s, 2, n)):
return s-isqrt(m)
i+=1
print([a(n) for n in range(1, 69)])
(PARI)
a(n) = my(i=1, s, t); while(!issquare((s=sqrtint((n*i)-1)+1)^2 % n, &t), i++); s-t;
CROSSREFS
KEYWORD
nonn
AUTHOR
Darío Clavijo, Jun 06 2024
STATUS
approved