login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362502
Least k > 0 such that (floor(sqrt(n*k)) + 1)^2 mod n is a square.
2
1, 1, 1, 1, 1, 2, 3, 1, 3, 4, 5, 1, 7, 8, 1, 1, 9, 4, 11, 2, 1, 14, 15, 1, 8, 16, 1, 3, 19, 2, 21, 1, 3, 24, 1, 2, 25, 26, 3, 1, 29, 2, 31, 6, 1, 34, 35, 1, 15, 4, 3, 7, 39, 4, 1, 2, 3, 44, 45, 1, 47, 48, 1, 2, 1, 4, 51, 10, 5, 2, 55, 1, 57, 58, 5, 12, 1, 6, 63, 1, 5, 64, 65, 1, 3, 68
OFFSET
1,6
LINKS
MATHEMATICA
nmax=86; a={}; For[n=1, n<=nmax, n++, For[k=1, k>0, k++, If[IntegerQ[Sqrt[Mod[Floor[Sqrt[n k]+1]^2, n]]], AppendTo[a, k]; k=-1]]]; a (* Stefano Spezia, Apr 24 2023 *)
PROG
(Python)
from gmpy2 import is_square, isqrt
def a(n):
m, k = 2, 0
while not is_square(m):
k+=1
m = pow(isqrt(n * k) + 1, 2, n)
return k
(PARI) a(n) = my(k=1); while(!issquare((sqrtint(n*k)+1)^2 % n), k++); k; \\ Michel Marcus, Apr 24 2023
CROSSREFS
Sequence in context: A185311 A338764 A214582 * A050375 A300724 A352686
KEYWORD
nonn
AUTHOR
Darío Clavijo, Apr 22 2023
STATUS
approved