OFFSET
0
COMMENTS
a(A115647(n)) > 0;
what is the smallest n such that a(n) > 1?.
No such n exists as 0 <= a(n) <= 1, cf. formula;
a(A059590(n)) = 1. - Reinhard Zumkeller, Dec 04 2011
LINKS
FORMULA
G.f.: Product_{j>=1} (1 + x^(j!)). - Emeric Deutsch, Apr 06 2006
a(n! + k) = a(k) for k: 0 <= k < (n-1)! and a(n! + k)=0 for k: (n-1)! <= k < n!.
a(n! + k) = 0 for k: (n-1)! <= k < n!.
EXAMPLE
a(32)=1 because we have [24,6,2].
MAPLE
g:=product(1+x^(j!), j=1..7): gser:=series(g, x=0, 125): seq(coeff(gser, x, n), n=1..122); # Emeric Deutsch, Apr 06 2006
MATHEMATICA
max = 7; f[x_] := Product[ 1+x^(j!), {j, 1, max}]; A115944 = Take[ CoefficientList[ Series[ f[x], {x, 0, max!}], x], 106] (* Jean-François Alcover, Dec 28 2011, after Emeric Deutsch *)
PROG
(Haskell)
a115944 = p (tail a000142_list) where
p _ 0 = 1
p (f:fs) m | m < f = 0
| otherwise = p fs (m - f) + p fs m
-- Reinhard Zumkeller, Dec 04 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 02 2006
EXTENSIONS
Offset changed and initial a(0)=1 added by Reinhard Zumkeller, Dec 04 2011
STATUS
approved