login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103368
Period 6: repeat [1, 1, -1, -1, 0, 0].
3
1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0
OFFSET
0,1
COMMENTS
The positive sequence is A131719(n+1) = a(n) = (cos(2*Pi*n/3+Pi/3)/6+sqrt(3)*sin(2*Pi*n/3+Pi/3)/6 -sqrt(3)*cos(Pi*n/3+Pi/6)/6+sin(Pi*n/3+Pi/6)/2+2/3, with g.f. (1+x^2) / ( (1-x)*(1-x+x^2)*(1+x+x^2) ).
FORMULA
G.f.: (1+x)/(1+x^2+x^4).
a(n) = Sum_{k=0..floor(n/2)} binomial(k, floor(n/2)-k)*(-1)^k.
a(n) = -cos(2*Pi*n/3+Pi/3)/2 + sqrt(3)*sin(2*Pi*n/3+Pi/3)/6 + sqrt(3)*cos(Pi*n/3+Pi/6)/2 + sin(Pi*n/3+Pi/6)/2.
a(n) = cos(Pi*n/3) + sin(2*Pi*n/3)/sqrt(3). - R. J. Mathar, Oct 08 2011
a(n) + a(n-2) + a(n-4) = 0 for n>3. - Wesley Ivan Hurt, Jun 20 2016
E.g.f.: (sqrt(3)*sin(sqrt(3)*x/2) + 3*cos(sqrt(3)*x/2)*exp(x))*exp(-x/2)/3. - Ilya Gutkovskiy, Jun 21 2016
MAPLE
A103368:=n->[1, 1, -1, -1, 0, 0][(n mod 6)+1]: seq(A103368(n), n=0..100); # Wesley Ivan Hurt, Jun 20 2016
MATHEMATICA
PadRight[{}, 100, {1, 1, -1, -1, 0, 0}] (* Wesley Ivan Hurt, Jun 20 2016 *)
PROG
(Magma) &cat [[1, 1, -1, -1, 0, 0]^^20]; // Wesley Ivan Hurt, Jun 20 2016
CROSSREFS
Cf. A131719.
Sequence in context: A130093 A115944 A166446 * A055132 A285403 A183918
KEYWORD
easy,sign
AUTHOR
Paul Barry, Feb 02 2005
STATUS
approved