The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A103368 Period 6: repeat [1, 1, -1, -1, 0, 0]. 2
 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The positive sequence is A131719(n+1) = a(n) = (cos(2*Pi*n/3+Pi/3)/6+sqrt(3)*sin(2*Pi*n/3+Pi/3)/6 -sqrt(3)*cos(Pi*n/3+Pi/6)/6+sin(Pi*n/3+Pi/6)/2+2/3, with g.f. (1+x^2) / ( (1-x)*(1-x+x^2)*(1+x+x^2) ). LINKS Index entries for linear recurrences with constant coefficients, signature (0,-1,0,-1). FORMULA G.f.: (1+x)/(1+x^2+x^4). a(n) = Sum_{k=0..floor(n/2)} binomial(k, floor(n/2)-k)*(-1)^k. a(n) = -cos(2*Pi*n/3+Pi/3)/2 + sqrt(3)*sin(2*Pi*n/3+Pi/3)/6 + sqrt(3)*cos(Pi*n/3+Pi/6)/2 + sin(Pi*n/3+Pi/6)/2. a(n) = cos(Pi*n/3) + sin(2*Pi*n/3)/sqrt(3). - R. J. Mathar, Oct 08 2011 a(n) + a(n-2) + a(n-4) = 0 for n>3. - Wesley Ivan Hurt, Jun 20 2016 E.g.f.: (sqrt(3)*sin(sqrt(3)*x/2) + 3*cos(sqrt(3)*x/2)*exp(x))*exp(-x/2)/3. - Ilya Gutkovskiy, Jun 21 2016 MAPLE A103368:=n->[1, 1, -1, -1, 0, 0][(n mod 6)+1]: seq(A103368(n), n=0..100); # Wesley Ivan Hurt, Jun 20 2016 MATHEMATICA PadRight[{}, 100, {1, 1, -1, -1, 0, 0}] (* Wesley Ivan Hurt, Jun 20 2016 *) PROG (MAGMA) &cat [[1, 1, -1, -1, 0, 0]^^20]; // Wesley Ivan Hurt, Jun 20 2016 CROSSREFS Cf. A131719. Sequence in context: A130093 A115944 A166446 * A055132 A285403 A183918 Adjacent sequences:  A103365 A103366 A103367 * A103369 A103370 A103371 KEYWORD easy,sign AUTHOR Paul Barry, Feb 02 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 21:30 EST 2020. Contains 331128 sequences. (Running on oeis4.)