

A130093


A051731 * a lower triangular matrix with A036987 on the main diagonal and the rest zeros.


3



1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Right border = A036987, the FredholmRueppel sequence, (1, 1, 0, 1, 0, 0, 0, 1, 0,...). Row sums = the ruler function, A001511: (1, 2, 1, 3, 1, 2, 1, 4,...).
A130093 also = A047999 (Sierpinski's gasket) * A036987 diagonalized, as infinite lower triangular matrices.  Gary W. Adamson, Oct 21 2009
Eigensequence of A130093 = A001511, (same sequence as row sums).  Gary W. Adamson, Oct 21 2009
Equals Sierpinski's gasket, A047999 * A036987 (diagonalized); as infinite lower triangular matrices.  Gary W. Adamson, Oct 26 2009


LINKS

Table of n, a(n) for n=1..55.


FORMULA

Inverse Moebius transform of a lower triangular matrix with A036987 (the FredholmRueppel sequence) on the main diagonal and the rest zeros.


EXAMPLE

First few rows of the triangle are:
1;
1, 1;
1, 0, 0;
1, 1, 0, 1;
1, 0, 0, 0, 0;
1, 1, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0;
1, 1, 0, 1, 0, 0, 0, 1;
...


CROSSREFS

Cf. A001511, A051731, A036987.
Cf. A047999 [From Gary W. Adamson, Oct 21 2009, Oct 26 2009]
Sequence in context: A084846 A285498 A285504 * A115944 A166446 A103368
Adjacent sequences: A130090 A130091 A130092 * A130094 A130095 A130096


KEYWORD

nonn,tabl


AUTHOR

Gary W. Adamson, May 06 2007


STATUS

approved



