OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. For example, 540 = prime(1)^2 * prime(2)^3 * prime(3)^1 has sum of distinct prime indices 1 + 2 + 3 = 6, while the number of prime factors counted with multiplicity is 2 + 3 + 1 = 6, so 540 belongs to the sequence.
Also Heinz numbers of the integer partitions counted by A114638. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
9: {2,2}
12: {1,1,2}
18: {1,2,2}
40: {1,1,1,3}
100: {1,1,3,3}
112: {1,1,1,1,4}
125: {3,3,3}
240: {1,1,1,1,2,3}
250: {1,3,3,3}
352: {1,1,1,1,1,5}
360: {1,1,1,2,2,3}
392: {1,1,1,4,4}
405: {2,2,2,2,3}
540: {1,1,2,2,2,3}
600: {1,1,1,2,3,3}
672: {1,1,1,1,1,2,4}
MAPLE
with(numtheory):
q:= n-> is(add(pi(p), p=factorset(n))=bigomega(n)):
select(q, [$1..5600])[]; # Alois P. Heinz, Mar 07 2019
MATHEMATICA
Select[Range[1000], Total[PrimePi/@First/@FactorInteger[#]]==PrimeOmega[#]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 07 2019
STATUS
approved