login
A324570
Numbers where the sum of distinct prime indices (A066328) is equal to the number of prime factors counted with multiplicity (A001222).
13
1, 2, 9, 12, 18, 40, 100, 112, 125, 240, 250, 352, 360, 392, 405, 540, 600, 672, 675, 810, 832, 900, 1008, 1125, 1350, 1372, 1500, 1512, 1701, 1875, 1936, 2112, 2176, 2240, 2250, 2268, 2352, 2401, 3168, 3402, 3528, 3750, 3969, 4752, 4802, 4864, 4992, 5292
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. For example, 540 = prime(1)^2 * prime(2)^3 * prime(3)^1 has sum of distinct prime indices 1 + 2 + 3 = 6, while the number of prime factors counted with multiplicity is 2 + 3 + 1 = 6, so 540 belongs to the sequence.
Also Heinz numbers of the integer partitions counted by A114638. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
FORMULA
A066328(a(n)) = A001222(a(n)).
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
9: {2,2}
12: {1,1,2}
18: {1,2,2}
40: {1,1,1,3}
100: {1,1,3,3}
112: {1,1,1,1,4}
125: {3,3,3}
240: {1,1,1,1,2,3}
250: {1,3,3,3}
352: {1,1,1,1,1,5}
360: {1,1,1,2,2,3}
392: {1,1,1,4,4}
405: {2,2,2,2,3}
540: {1,1,2,2,2,3}
600: {1,1,1,2,3,3}
672: {1,1,1,1,1,2,4}
MAPLE
with(numtheory):
q:= n-> is(add(pi(p), p=factorset(n))=bigomega(n)):
select(q, [$1..5600])[]; # Alois P. Heinz, Mar 07 2019
MATHEMATICA
Select[Range[1000], Total[PrimePi/@First/@FactorInteger[#]]==PrimeOmega[#]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 07 2019
STATUS
approved