login
A324523
Number of colored set partitions of [2n] where elements of subsets have distinct colors and exactly n colors are used.
2
1, 1, 74, 31770, 42687960, 134092967400, 831428629796160, 9095459029214397840, 162061482211484681105280, 4429476877635332233622271360, 177245727799376537644530489120000, 10002691163041098923871227379695673600, 772102922309973700712743861257373871078400
OFFSET
0,3
LINKS
FORMULA
a(n) = A323128(2n,n).
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, add(k!/(k-j)!
*binomial(n-1, j-1)*b(n-j, k), j=1..min(k, n)))
end:
a:= n-> add(b(2*n, n-i)*(-1)^i*binomial(n, i), i=0..n):
seq(a(n), n=0..15);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[k!/(k-j)! Binomial[n - 1, j - 1]* b[n - j, k], {j, 1, Min[k, n]}]];
a[n_] := Sum[b[2n, n - i] (-1)^i Binomial[n, i], {i, 0, n}];
a /@ Range[0, 15] (* Jean-François Alcover, May 05 2020, after Maple *)
CROSSREFS
Cf. A323128.
Sequence in context: A250906 A268090 A278378 * A145695 A116132 A257534
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 03 2019
STATUS
approved