OFFSET
1,1
COMMENTS
A subsequence of A055394, the numbers of the form a^2 + b^3.
Although it is easy to produce many terms of this sequence, it is nontrivial to check whether a very large number is of this form.
EXAMPLE
The first terms are 1^2 + 1^6 = 2, 2^2 + 1^6 = 5, 3^2 + 1^6 = 10, 4^2 + 1^6 = 17, 5^2 + 1^6 = 26, ..., 8^2 + 1^6 = 1^2 + 2^6 = 65, 2^2 + 2^6 = 68, 3^2 + 2^6 = 73, ...
PROG
(PARI) is(n, k=2, m=6)=for(b=1, sqrtnint(n-1, m), ispower(n-b^m, k)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
A303372_vec(L=10^5, k=2, m=6, S=List())={for(a=1, sqrtnint(L-1, m), for(b=1, sqrtnint(L-a^m, k), listput(S, a^m+b^k))); Set(S)} \\ List of all terms up to limit L
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Apr 22 2018
STATUS
approved