login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303372
Numbers of the form a^2 + b^6, with integers a, b > 0.
8
2, 5, 10, 17, 26, 37, 50, 65, 68, 73, 80, 82, 89, 100, 101, 113, 122, 128, 145, 164, 170, 185, 197, 208, 226, 233, 257, 260, 289, 290, 320, 325, 353, 362, 388, 401, 425, 442, 464, 485, 505, 530, 548, 577, 593, 626, 640, 677, 689, 730, 733, 738, 740, 745, 754, 765, 778
OFFSET
1,1
COMMENTS
A subsequence of A055394, the numbers of the form a^2 + b^3.
Although it is easy to produce many terms of this sequence, it is nontrivial to check whether a very large number is of this form.
EXAMPLE
The first terms are 1^2 + 1^6 = 2, 2^2 + 1^6 = 5, 3^2 + 1^6 = 10, 4^2 + 1^6 = 17, 5^2 + 1^6 = 26, ..., 8^2 + 1^6 = 1^2 + 2^6 = 65, 2^2 + 2^6 = 68, 3^2 + 2^6 = 73, ...
PROG
(PARI) is(n, k=2, m=6)=for(b=1, sqrtnint(n-1, m), ispower(n-b^m, k)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
A303372_vec(L=10^5, k=2, m=6, S=List())={for(a=1, sqrtnint(L-1, m), for(b=1, sqrtnint(L-a^m, k), listput(S, a^m+b^k))); Set(S)} \\ List of all terms up to limit L
CROSSREFS
Cf. A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4).
Cf. A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6).
Sequence in context: A078325 A059591 A082607 * A159547 A002522 A217990
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Apr 22 2018
STATUS
approved