login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers of the form a^6 + b^7, with integers a, b > 0.
2

%I #7 Apr 25 2018 14:01:21

%S 2,65,129,192,730,857,2188,2251,2916,4097,4224,6283,15626,15753,16385,

%T 16448,17113,17812,20480,32009,46657,46784,48843,63040,78126,78189,

%U 78854,82221,93750,117650,117777,119836,124781,134033,195774,262145,262272,264331,278528,279937

%N Numbers of the form a^6 + b^7, with integers a, b > 0.

%C Although it is easy to produce many terms of this sequence, it is nontrivial to check efficiently whether a very large number is of this form.

%e The sequence starts with 1^6 + 1^7, 2^6 + 1^7, 1^6 + 2^7, 2^6 + 2^7, 3^6 + 1^7, 3^6 + 2^7, ...

%t With[{nn=40}, Take[Union[First[#]^6 + Last[#]^7&/@Tuples[Range[nn], 2]], nn]] (* _Vincenzo Librandi_, Apr 25 2018 *)

%o (PARI) is(n,k=6,m=7)=for(b=1,sqrtnint(n-1,m),ispower(n-b^m,n)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.

%o A303376_vec(L=10^5,k=6,m=7,S=List())={for(a=1,sqrtnint(L-1,m),for(b=1,sqrtnint(L-a^m,k), listput(S,a^m+b^k)));Set(S)} \\ all terms up to limit L

%Y Cf. A000404 (a^2 + b^2), A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4).

%Y Cf. A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6).

%K nonn,easy

%O 1,1

%A _M. F. Hasler_, Apr 22 2018