The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A303377 Numbers of the form a^7 + b^8, with integers a, b > 0. 0
 2, 129, 257, 384, 2188, 2443, 6562, 6689, 8748, 16385, 16640, 22945, 65537, 65664, 67723, 78126, 78381, 81920, 84686, 143661, 279937, 280192, 286497, 345472, 390626, 390753, 392812, 407009, 468750, 670561, 823544, 823799, 830104, 889079, 1214168, 1679617, 1679744, 1681803 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Although it is easy to produce many terms of this sequence, it is nontrivial to check efficiently whether a very large number is of this form. LINKS EXAMPLE The sequence starts with 1^7 + 1^8, 2^7 + 1^8, 1^7 + 2^8, 2^7 + 2^8, 3^7 + 1^8, 3^7 + 2^8, 1^7 + 3^8, 2^7 + 3^8, 3^7 + 3^8, 4^7 + 1^8, 4^7 + 2^8, 4^7 + 3^8, 1, ... MATHEMATICA With[{nn=40}, Take[Union[First[#]^7 + Last[#]^8&/@Tuples[Range[nn], 2]], nn]] PROG (PARI) is(n, k=7, m=8)=for(b=1, sqrtnint(n-1, m), ispower(n-b^m, n)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0. A303377_vec(L=10^7, k=7, m=8, S=List())={for(a=1, sqrtnint(L-1, m), for(b=1, sqrtnint(L-a^m, k), listput(S, a^m+b^k))); Set(S)} \\ all terms up to limit L CROSSREFS Cf. A000404 (a^2 + b^2), A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4). Cf. A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6), A303376 (a^6 + b^7). Sequence in context: A296060 A090121 A003369 * A342618 A258806 A216358 Adjacent sequences:  A303374 A303375 A303376 * A303378 A303379 A303380 KEYWORD nonn,easy AUTHOR M. F. Hasler, May 04 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 06:42 EST 2021. Contains 349401 sequences. (Running on oeis4.)