login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229813
G.f. C(x) satisfies: C(x) = x + 3*A(x)*B(x), where A(x) = x + B(x)*C(x) and B(x) = x + 2*A(x)*C(x).
3
1, 3, 9, 45, 225, 1275, 7389, 44745, 276849, 1750275, 11236833, 73114437, 480936033, 3193267467, 21372274341, 144040951953, 976706321121, 6658535367555, 45611307797049, 313782691341597, 2167022784185505, 15018193080454491, 104413014897103917, 728039790269173209
OFFSET
1,2
LINKS
Vaclav Kotesovec, Recurrence (of order 9)
FORMULA
G.f. C = C(x) satisfies:
(1) C = x + 3*x^2*(1+C)*(1+2*C)/(1-2*C^2)^2.
(2) C = x*(1+3*A)/(1-6*A^2) where A = x*(1+C)/(1-2*C^2) is the g.f. of A229811.
(3) C = x*(1+3*B)/(1-3*B^2) where B = x*(1+2*C)/(1-2*C^2) is the g.f. of A229812.
The g.f.s A = A(x) (A229811), B = B(x) (A229812), C = C(x) (A229813), satisfy:
A*B*C = (A^2 - x*A) = (B^2 - x*B)/2 = (C^2 - x*C)/3.
a(n) ~ c*d^n/n^(3/2), where d = 7.438049365405038364... is the root of the equation -9 - 114*d - 442*d^2 - 792*d^3 - 660*d^4 - 432*d^5 - 192*d^6 - 24*d^7 + 8*d^8 = 0 and c = 0.102311163701744278796886833630056159781... - Vaclav Kotesovec, Sep 30 2013
EXAMPLE
G.f.: C(x) = x + 3*x^2 + 9*x^3 + 45*x^4 + 225*x^5 + 1275*x^6 + 7389*x^7 +...
Related series:
A(x) = x + x^2 + 5*x^3 + 23*x^4 + 121*x^5 + 673*x^6 + 3953*x^7 +...
B(x) = x + 2*x^2 + 8*x^3 + 34*x^4 + 184*x^5 + 1010*x^6 + 5936*x^7 +...
where C(x) = x + 3*A(x)*B(x).
(C(x)^2 - x*C(x))/3 = A(x)*B(x)*C(x) = x^3 + 6*x^4 + 33*x^5 + 192*x^6 + 1145*x^7 + 7038*x^8 + 44093*x^9 + 281232*x^10 + 1818513*x^11 + 11899830*x^12 +...
PROG
(PARI) {a(n)=local(A=x+x^2, B=x+2*x^2, C=x+3*x^2); for(i=1, n, A=x+B*C+x*O(x^n); B=x+2*A*C+x*O(x^n); C=x+3*A*B+x*O(x^n)); polcoeff(C, n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n)=local(C=x); for(i=1, n, C=x+3*x^2*(1+C)*(1+2*C)/(1-2*C^2 +x*O(x^n))^2); polcoeff(C, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A229811 (A(x)), A229812 (B(x)).
Sequence in context: A327648 A262129 A012821 * A262130 A262131 A262132
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 30 2013
STATUS
approved