Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Nov 18 2013 12:29:08
%S 1,3,9,45,225,1275,7389,44745,276849,1750275,11236833,73114437,
%T 480936033,3193267467,21372274341,144040951953,976706321121,
%U 6658535367555,45611307797049,313782691341597,2167022784185505,15018193080454491,104413014897103917,728039790269173209
%N G.f. C(x) satisfies: C(x) = x + 3*A(x)*B(x), where A(x) = x + B(x)*C(x) and B(x) = x + 2*A(x)*C(x).
%H Vaclav Kotesovec, <a href="/A229813/b229813.txt">Table of n, a(n) for n = 1..300</a>
%H Vaclav Kotesovec, <a href="/A229813/a229813.txt">Recurrence (of order 9)</a>
%F G.f. C = C(x) satisfies:
%F (1) C = x + 3*x^2*(1+C)*(1+2*C)/(1-2*C^2)^2.
%F (2) C = x*(1+3*A)/(1-6*A^2) where A = x*(1+C)/(1-2*C^2) is the g.f. of A229811.
%F (3) C = x*(1+3*B)/(1-3*B^2) where B = x*(1+2*C)/(1-2*C^2) is the g.f. of A229812.
%F The g.f.s A = A(x) (A229811), B = B(x) (A229812), C = C(x) (A229813), satisfy:
%F A*B*C = (A^2 - x*A) = (B^2 - x*B)/2 = (C^2 - x*C)/3.
%F a(n) ~ c*d^n/n^(3/2), where d = 7.438049365405038364... is the root of the equation -9 - 114*d - 442*d^2 - 792*d^3 - 660*d^4 - 432*d^5 - 192*d^6 - 24*d^7 + 8*d^8 = 0 and c = 0.102311163701744278796886833630056159781... - _Vaclav Kotesovec_, Sep 30 2013
%e G.f.: C(x) = x + 3*x^2 + 9*x^3 + 45*x^4 + 225*x^5 + 1275*x^6 + 7389*x^7 +...
%e Related series:
%e A(x) = x + x^2 + 5*x^3 + 23*x^4 + 121*x^5 + 673*x^6 + 3953*x^7 +...
%e B(x) = x + 2*x^2 + 8*x^3 + 34*x^4 + 184*x^5 + 1010*x^6 + 5936*x^7 +...
%e where C(x) = x + 3*A(x)*B(x).
%e (C(x)^2 - x*C(x))/3 = A(x)*B(x)*C(x) = x^3 + 6*x^4 + 33*x^5 + 192*x^6 + 1145*x^7 + 7038*x^8 + 44093*x^9 + 281232*x^10 + 1818513*x^11 + 11899830*x^12 +...
%o (PARI) {a(n)=local(A=x+x^2,B=x+2*x^2,C=x+3*x^2);for(i=1,n,A=x+B*C+x*O(x^n);B=x+2*A*C+x*O(x^n);C=x+3*A*B+x*O(x^n));polcoeff(C,n)}
%o for(n=1,30,print1(a(n),", "))
%o (PARI) {a(n)=local(C=x);for(i=1,n,C=x+3*x^2*(1+C)*(1+2*C)/(1-2*C^2 +x*O(x^n))^2);polcoeff(C,n)}
%o for(n=1,30,print1(a(n),", "))
%Y Cf. A229811 (A(x)), A229812 (B(x)).
%K nonn
%O 1,2
%A _Paul D. Hanna_, Sep 30 2013