login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099569
Riordan array (((1+x)^2 - x^3)/(1+x)^3, 1/(1+x)).
3
1, -1, 1, 1, -2, 1, -2, 3, -3, 1, 4, -5, 6, -4, 1, -7, 9, -11, 10, -5, 1, 11, -16, 20, -21, 15, -6, 1, -16, 27, -36, 41, -36, 21, -7, 1, 22, -43, 63, -77, 77, -57, 28, -8, 1, -29, 65, -106, 140, -154, 134, -85, 36, -9, 1, 37, -94, 171, -246, 294, -288, 219, -121, 45, -10, 1, -46, 131, -265, 417, -540, 582, -507, 340, -166, 55, -11, 1
OFFSET
0,5
COMMENTS
Inverse matrix of A099567. Row sums are A099570.
FORMULA
Sum_{k=0..n} T(n, k) = A099570(n).
Columns have g.f. ((1+x)^2 - x^3)/(1+x)^3*(x/(1+x))^k.
T(n,k) = (-1)^(n+k)*(binomial(n, n-k) + Sum_{i = 3..n} (i-2)*binomial(n-i,n-k-i)), for 0 <= k <= n, otherwise 0. - Peter Bala, Mar 21 2018
From G. C. Greubel, Jul 25 2022: (Start)
T(n, k) = (-1)^(n+k)*(binomial(n, k) + binomial(n-1, k+2)), with T(0, k) = 1.
T(2*n-1, n-1) = (-1)^n*A076540(n), n >= 1.
T(n, n-1) = -n. (End)
EXAMPLE
Rows begin as:
1;
-1, 1;
1, -2, 1;
-2, 3, -3, 1;
4, -5, 6, -4, 1;
-7, 9, -11, 10, -5, 1;
11, -16, 20, -21, 15, -6, 1;
-16, 27, -36, 41, -36, 21, -7, 1;
22, -43, 63, -77, 77, -57, 28, -8, 1;
-29, 65, -106, 140, -154, 134, -85, 36, -9, 1;
MAPLE
C := proc (n, k) if 0 <= k and k <= n then factorial(n)/(factorial(k)*factorial(n-k)) else 0 end if;
end proc:
for n from 0 to 10 do
seq((-1)^(n+k)*(C(n, n-k) + add((i-2)*C(n-i, n-k-i), i = 3..n)), k = 0..n);
end do; # Peter Bala, Mar 21 2018
MATHEMATICA
T[n_, k_]:= (-1)^(n+k)*(Binomial[n, k] + Binomial[n-1, k+2]);
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 25 2022 *)
PROG
(Magma) [n eq 0 select 1 else (-1)^(n+k)*(Binomial(n, k) + Binomial(n-1, k+2)): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 25 2022
(SageMath)
def A099569(n, k): return 1 if (n==0) else (-1)^(n+k)*(binomial(n, k) +binomial(n-1, k+2))
flatten([[A099569(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 25 2022
CROSSREFS
Cf. A076540, A099570 (row sums), A099567.
Sequence in context: A202191 A052250 A333878 * A191579 A097724 A091836
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Oct 22 2004
STATUS
approved