OFFSET
0,5
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
Sum_{k=0..n} T(n, k) = A099570(n).
Columns have g.f. ((1+x)^2 - x^3)/(1+x)^3*(x/(1+x))^k.
T(n,k) = (-1)^(n+k)*(binomial(n, n-k) + Sum_{i = 3..n} (i-2)*binomial(n-i,n-k-i)), for 0 <= k <= n, otherwise 0. - Peter Bala, Mar 21 2018
From G. C. Greubel, Jul 25 2022: (Start)
T(n, k) = (-1)^(n+k)*(binomial(n, k) + binomial(n-1, k+2)), with T(0, k) = 1.
T(2*n-1, n-1) = (-1)^n*A076540(n), n >= 1.
T(n, n-1) = -n. (End)
EXAMPLE
Rows begin as:
1;
-1, 1;
1, -2, 1;
-2, 3, -3, 1;
4, -5, 6, -4, 1;
-7, 9, -11, 10, -5, 1;
11, -16, 20, -21, 15, -6, 1;
-16, 27, -36, 41, -36, 21, -7, 1;
22, -43, 63, -77, 77, -57, 28, -8, 1;
-29, 65, -106, 140, -154, 134, -85, 36, -9, 1;
MAPLE
C := proc (n, k) if 0 <= k and k <= n then factorial(n)/(factorial(k)*factorial(n-k)) else 0 end if;
end proc:
for n from 0 to 10 do
seq((-1)^(n+k)*(C(n, n-k) + add((i-2)*C(n-i, n-k-i), i = 3..n)), k = 0..n);
end do; # Peter Bala, Mar 21 2018
MATHEMATICA
T[n_, k_]:= (-1)^(n+k)*(Binomial[n, k] + Binomial[n-1, k+2]);
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 25 2022 *)
PROG
(Magma) [n eq 0 select 1 else (-1)^(n+k)*(Binomial(n, k) + Binomial(n-1, k+2)): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 25 2022
(SageMath)
def A099569(n, k): return 1 if (n==0) else (-1)^(n+k)*(binomial(n, k) +binomial(n-1, k+2))
flatten([[A099569(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 25 2022
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Oct 22 2004
STATUS
approved