login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052250
Triangle T(n,k) (n >= 1, k >= 1) giving dimension of bigrading of Hopf algebra of rooted trees.
7
1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 3, 6, 6, 4, 1, 8, 11, 13, 10, 5, 1, 16, 26, 27, 24, 15, 6, 1, 41, 58, 63, 55, 40, 21, 7, 1, 98, 142, 148, 132, 100, 62, 28, 8, 1, 250, 351, 363, 322, 251, 168, 91, 36, 9, 1, 631, 890, 912, 804, 635, 444, 266, 128, 45, 10, 1, 1646, 2282, 2330, 2051
OFFSET
1,5
LINKS
D. J. Broadhurst and D. Kreimer, Towards cohomology of renormalization...
EXAMPLE
Triangle begins
1;
1, 1;
1, 2, 1;
2, 3, 3, 1;
3, 6, 6, 4, 1;
MAPLE
with(numtheory): A81:= proc(n) option remember; `if`(n<2, n, (add(add(d*A81(d), d=divisors(j)) *A81(n-j), j=1..n-1))/ (n-1)) end: b:= proc(n) option remember; -`if`(n<0, 1, add(b(n-i) *A81(i+1), i=1..n+1)) end: B:= proc(n) add(b(i) *x^i, i=0..n) end: T:= (n, k)-> coeff(B(n)^k, x, n-k): seq(seq(T(n, k), k=1..n), n=1..13); # Alois P. Heinz, Oct 23 2009
MATHEMATICA
A81[n_] := A81[n] = If[n < 2, n, Sum[ Sum[ d*A81[d], {d, Divisors[j]} ] * A81[n-j], {j, 1, n-1}]/(n-1)]; b[n_] := b[n] = -If[n < 0, 1, Sum[ b[n-i]*A81[i+1], {i, 1, n+1}]]; B[n_] := Sum[ b[i]*x^i, {i, 0, n}]; T[n_, k_] := Coefficient[ B[n]^k, x, n-k]; Flatten[ Table[ T[n, k], {n, 1, 12}, {k, 1, n}]] (* Jean-François Alcover, Jan 20 2012, translated from Alois P. Heinz's Maple program *)
CROSSREFS
First few columns give A051573, A051603, A052251, A052252.
Row sums give A000081(n+1). - Alois P. Heinz, Oct 23 2009
Sequence in context: A099567 A140530 A202191 * A333878 A099569 A191579
KEYWORD
nonn,nice,tabl
AUTHOR
David Broadhurst, Feb 05 2000
EXTENSIONS
More terms from Alois P. Heinz, Oct 23 2009
STATUS
approved