login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+4, k).
5

%I #12 Jul 25 2022 15:42:04

%S 1,1,6,7,23,30,73,103,211,314,581,895,1560,2455,4135,6590,10890,17480,

%T 28590,46070,74946,121016,196326,317342,514123,831465,1346148,2177613,

%U 3524441,5702054,9227311,14929365,24157645,39087010,63245795,102332805

%N a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+4, k).

%C Fifth column of triangle A054450. In general Sum_{k=0..floor(n/2)} binomial(n-k+r, k), r>=0, will have g.f. 1/((1-x^2)^r*(1-x-x^2)) and for r>0, a(n) = Sum_{k=0..n} Fibonacci(n-k+1)*binomial(k/2+r-1, r-1)*(1+(-1)^k)/2.

%H G. C. Greubel, <a href="/A099572/b099572.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,5,-4,-10,6,10,-4,-5,1,1).

%F G.f.: 1/((1-x^2)^4*(1-x-x^2)). - corrected by R. J. Mathar, Feb 20 2011

%F a(n) = Sum_{k=0..n} Fibonacci(n-k+1)*binomial(k/2+3, 3)*((1+(-1)^k)/2).

%F a(n) = Fibonacci(n+5) + (-1)^n*(n^3 + 9*n^2 + 35*n + 33)/96 - (n^3 + 21*n^2 + 155*n + 417)/96. - _G. C. Greubel_, Jul 25 2022

%t Table[Fibonacci(n+5) +(-1)^n*(n^3+9*n^2+35*n+33)/96 -(n^3+21*n^2+155*n+417)/96, {n,0,40}] (* _G. C. Greubel_, Jul 25 2022 *)

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x^2)^4*(1-x-x^2)) )); // _G. C. Greubel_, Jul 25 2022

%o (SageMath) [fibonacci(n+5) + (-1)^n*(n^3+9*n^2+35*n+33)/96 - (n^3+21*n^2+155*n + 417)/96 for n in (0..40)] # _G. C. Greubel_, Jul 25 2022

%Y Cf. A000045, A054450, A054451, A052952, A099571.

%K easy,nonn

%O 0,3

%A _Paul Barry_, Oct 23 2004