Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jul 26 2022 10:09:50
%S 1,1,1,2,1,1,3,3,1,1,5,4,4,1,1,8,8,5,5,1,1,13,12,12,6,6,1,1,21,21,17,
%T 17,7,7,1,1,34,33,33,23,23,8,8,1,1,55,55,50,50,30,30,9,9,1,1,89,88,88,
%U 73,73,38,38,10,10,1,1,144,144,138,138,103,103,47,47,11,11,1,1
%N Triangle of partial row sums of unsigned triangle A049310(n,m), n >= m >= 0 (Chebyshev S-polynomials).
%C In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is Fib(z)/(1-x*z/(1-z^2)) where Fib(x)=1/(1-x-x^2) = g.f. for A000045(n+1) (Fibonacci numbers without 0).
%C This is the first member of the family of Riordan-type matrices obtained from the unsigned convolution matrix A049310 by repeated application of the partial row sums procedure.
%H G. C. Greubel, <a href="/A054450/b054450.txt">Rows n = 0..50 of the triangle, flattened</a>
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%F T(n, m) = Sum_{k=m..n} |A049310(n, k)| (sequence of partial row sums in column m).
%F Column m recursion: T(n, m) = Sum_{j=m..n} T(j-1, m)*|A049310(n-j, 0)| + |A049310(n, m)|, n >= m >= 0, a(n, m) := 0 if n<m.
%F T(n, 0) = A000045(n+1).
%F T(n, 1) = A052952(n-1).
%F T(n, 2) = A054451(n-2).
%F Sum_{k=0..n} T(n, k) = A029907(n) = A054453(n, 0).
%F G.f. for column m: Fib(x)*(x/(1-x^2))^m, m >= 0, with Fib(x) = g.f. A000045(n+1).
%F The corresponding square array has T(n, k) = Sum_{j=0..floor(k/2)} binomial(n+k-j, j). - _Paul Barry_, Oct 23 2004
%F From _G. C. Greubel_, Jul 25 2022: (Start)
%F T(n, 3) = A099571(n-3).
%F T(n, 4) = A099572(n-4).
%F T(n, n) = T(n, n-1) = A000012(n).
%F T(n, n-2) = A000027(n), n >= 2.
%F T(n, n-3) = A000027(n), n >= 3.
%F T(n, n-4) = A152948(n), n >= 4.
%F T(n, n-5) = A152948(n), n >= 5.
%F T(n, n-6) = A038793(n), n >= 6.
%F T(n, n-8) = A038794(n), n >= 8.
%F T(n, n-10) = A038795(n), n >= 10.
%F T(n, n-12) = A038796(n), n >= 12. (End)
%e Triangle begins as:
%e 1;
%e 1, 1;
%e 2, 1, 1;
%e 3, 3, 1, 1;
%e 5, 4, 4, 1, 1;
%e 8, 8, 5, 5, 1, 1;
%e 13, 12, 12, 6, 6, 1, 1;
%e 21, 21, 17, 17, 7, 7, 1, 1;
%e 34, 33, 33, 23, 23, 8, 8, 1, 1;
%e 55, 55, 50, 50, 30, 30, 9, 9, 1, 1;
%e 89, 88, 88, 73, 73, 38, 38, 10, 10, 1, 1;
%e ...
%e Fourth row polynomial (n=3): p(3,x) = 3 + 3*x + x^2 + x^3.
%t A049310[n_, k_]:= A049310[n, k]= If[n<0, 0, If[k==n, 1, A049310[n-1, k-1] - A049310[n-2, k] ]];
%t A054450[n_, k_]:= A054450[n, k]= Sum[Abs[A049310[n,j]], {j,k,n}];
%t Table[A054450[n, k], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jul 25 2022 *)
%o (Magma)
%o A049310:= func< n,k | ((n+k) mod 2) eq 0 select (-1)^(Floor((n+k)/2)+k)*Binomial(Floor((n+k)/2), k) else 0 >;
%o A054450:= func< n,k | (&+[Abs(A049310(n,j)): j in [k..n]]) >;
%o [A054450(n,k): k in [0..n], n in [0..15]]; // _G. C. Greubel_, Jul 25 2022
%o (SageMath)
%o @CachedFunction
%o def A049310(n, k):
%o if (n<0): return 0
%o elif (k==n): return 1
%o else: return A049310(n-1, k-1) - A049310(n-2, k)
%o def A054450(n,k): return sum( abs(A049310(n,j)) for j in (k..n) )
%o flatten([[A054450(n,k) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Jul 25 2022
%Y Cf. A000027, A000045, A029907 (row sums), A038793, A038794, A038795, A038796.
%Y Cf. A049310, A052952, A053121, A054451, A054453, A099571, A099572, A152948.
%K easy,nonn,tabl
%O 0,4
%A _Wolfdieter Lang_, Apr 27 2000 and May 08 2000