login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053636
a(n) = Sum_{odd d|n} phi(d)*2^(n/d).
5
0, 2, 4, 12, 16, 40, 72, 140, 256, 540, 1040, 2068, 4128, 8216, 16408, 32880, 65536, 131104, 262296, 524324, 1048640, 2097480, 4194344, 8388652, 16777728, 33554600, 67108912, 134218836, 268435552, 536870968, 1073744160, 2147483708
OFFSET
0,2
LINKS
FORMULA
a(n) = n * A063776(n).
a(n) = Sum_{k=1..A001227(n)} A000010(A182469(n,k)) * 2^(n/A182469(n, A001227(n)+1-k)). - Reinhard Zumkeller, Sep 13 2013
G.f.: Sum_{m >= 0} phi(2*m + 1)*2*x^(2*m + 1)/(1 - 2*x^(2*m + 1)). - Petros Hadjicostas, Jul 20 2019
EXAMPLE
2*x + 4*x^2 + 12*x^3 + 16*x^4 + 40*x^5 + 72*x^6 + 140*x^7 + 256*x^8 + 540*x^9 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, Sum[ Mod[ d, 2] EulerPhi[ d] 2^(n / d), {d, Divisors[ n]}]] (* Michael Somos, May 09 2013 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, (d % 2) * eulerphi(d) * 2^(n / d)))} /* Michael Somos, May 09 2013 */
(Haskell)
a053636 0 = 0
a053636 n = sum $ zipWith (*) (map a000010 ods) (map ((2 ^) . (div n)) ods)
where ods = a182469_row n
-- Reinhard Zumkeller, Sep 13 2013
(Python)
from sympy import totient, divisors
def A053636(n): return (sum(totient(d)<<n//d-1 for d in divisors(n>>(~n&n-1).bit_length(), generator=True))<<1) # Chai Wah Wu, Feb 21 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 23 2000
STATUS
approved