Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Feb 22 2023 01:42:54
%S 0,2,4,12,16,40,72,140,256,540,1040,2068,4128,8216,16408,32880,65536,
%T 131104,262296,524324,1048640,2097480,4194344,8388652,16777728,
%U 33554600,67108912,134218836,268435552,536870968,1073744160,2147483708
%N a(n) = Sum_{odd d|n} phi(d)*2^(n/d).
%H Seiichi Manyama, <a href="/A053636/b053636.txt">Table of n, a(n) for n = 0..3321</a>
%F a(n) = n * A063776(n).
%F a(n) = Sum_{k=1..A001227(n)} A000010(A182469(n,k)) * 2^(n/A182469(n, A001227(n)+1-k)). - _Reinhard Zumkeller_, Sep 13 2013
%F G.f.: Sum_{m >= 0} phi(2*m + 1)*2*x^(2*m + 1)/(1 - 2*x^(2*m + 1)). - _Petros Hadjicostas_, Jul 20 2019
%e 2*x + 4*x^2 + 12*x^3 + 16*x^4 + 40*x^5 + 72*x^6 + 140*x^7 + 256*x^8 + 540*x^9 + ...
%t a[ n_] := If[ n < 1, 0, Sum[ Mod[ d, 2] EulerPhi[ d] 2^(n / d), {d, Divisors[ n]}]] (* _Michael Somos_, May 09 2013 *)
%o (PARI) {a(n) = if( n<1, 0, sumdiv( n, d, (d % 2) * eulerphi(d) * 2^(n / d)))} /* _Michael Somos_, May 09 2013 */
%o (Haskell)
%o a053636 0 = 0
%o a053636 n = sum $ zipWith (*) (map a000010 ods) (map ((2 ^) . (div n)) ods)
%o where ods = a182469_row n
%o -- _Reinhard Zumkeller_, Sep 13 2013
%o (Python)
%o from sympy import totient, divisors
%o def A053636(n): return (sum(totient(d)<<n//d-1 for d in divisors(n>>(~n&n-1).bit_length(),generator=True))<<1) # _Chai Wah Wu_, Feb 21 2023
%Y Cf. A000010, A001227, A053635, A063776, A182469.
%K nonn
%O 0,2
%A _N. J. A. Sloane_, Mar 23 2000