login
a(n) = Sum_{odd d|n} phi(d)*2^(n/d).
5

%I #23 Feb 22 2023 01:42:54

%S 0,2,4,12,16,40,72,140,256,540,1040,2068,4128,8216,16408,32880,65536,

%T 131104,262296,524324,1048640,2097480,4194344,8388652,16777728,

%U 33554600,67108912,134218836,268435552,536870968,1073744160,2147483708

%N a(n) = Sum_{odd d|n} phi(d)*2^(n/d).

%H Seiichi Manyama, <a href="/A053636/b053636.txt">Table of n, a(n) for n = 0..3321</a>

%F a(n) = n * A063776(n).

%F a(n) = Sum_{k=1..A001227(n)} A000010(A182469(n,k)) * 2^(n/A182469(n, A001227(n)+1-k)). - _Reinhard Zumkeller_, Sep 13 2013

%F G.f.: Sum_{m >= 0} phi(2*m + 1)*2*x^(2*m + 1)/(1 - 2*x^(2*m + 1)). - _Petros Hadjicostas_, Jul 20 2019

%e 2*x + 4*x^2 + 12*x^3 + 16*x^4 + 40*x^5 + 72*x^6 + 140*x^7 + 256*x^8 + 540*x^9 + ...

%t a[ n_] := If[ n < 1, 0, Sum[ Mod[ d, 2] EulerPhi[ d] 2^(n / d), {d, Divisors[ n]}]] (* _Michael Somos_, May 09 2013 *)

%o (PARI) {a(n) = if( n<1, 0, sumdiv( n, d, (d % 2) * eulerphi(d) * 2^(n / d)))} /* _Michael Somos_, May 09 2013 */

%o (Haskell)

%o a053636 0 = 0

%o a053636 n = sum $ zipWith (*) (map a000010 ods) (map ((2 ^) . (div n)) ods)

%o where ods = a182469_row n

%o -- _Reinhard Zumkeller_, Sep 13 2013

%o (Python)

%o from sympy import totient, divisors

%o def A053636(n): return (sum(totient(d)<<n//d-1 for d in divisors(n>>(~n&n-1).bit_length(),generator=True))<<1) # _Chai Wah Wu_, Feb 21 2023

%Y Cf. A000010, A001227, A053635, A063776, A182469.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Mar 23 2000