OFFSET
0,4
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
FORMULA
G.f.: ( 1-x^2+2*x^3-x ) / ( (1+x+x^2)*(x-1)^2 ). - R. J. Mathar, Jul 14 2015
a(3n) = n+1. a(3n+1) = n. a(3n+2) = n-1. - R. J. Mathar, Jan 10 2017
a(n) = (3*n-3-12*cos(2*(n-5)*Pi/3)+4*sqrt(3)*sin(2*(n-5)*Pi/3))/9. - Wesley Ivan Hurt, Sep 29 2017
E.g.f.: exp(x)*(x - 1)/3 + 4*exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/9. - Stefano Spezia, Oct 02 2022
Sum_{n>=6} (-1)^n/a(n) = 3*(log(2)-1/2). - Amiram Eldar, Oct 04 2022
MATHEMATICA
LinearRecurrence[{1, 0, 1, -1}, {1, 0, -1, 2}, 100] (* Amiram Eldar, Oct 04 2022 *)
PROG
(PARI) a(n) = (n\3)-(n%3)+1
CROSSREFS
KEYWORD
easy,sign,changed
AUTHOR
Jason Earls, Sep 01 2001
STATUS
approved