The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295508 Triangle read by rows, related to binary partitions of n. 2
 0, 1, 0, 2, 1, 0, 3, 2, 1, 4, 3, 2, 0, 5, 4, 3, 1, 6, 5, 4, 2, 7, 6, 5, 3, 8, 7, 6, 4, 0, 9, 8, 7, 5, 1, 10, 9, 8, 6, 2, 11, 10, 9, 7, 3, 12, 11, 10, 8, 4, 13, 12, 11, 9, 5, 14, 13, 12, 10, 6, 15, 14, 13, 11, 7, 16, 15, 14, 12, 8, 0, 17, 16, 15, 13, 9, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS FORMULA Let L(n) = (length of binary representation of n) - 0^n then T(n, k) = n if k=0 else n - 2^(k-1) for n >= 0 and 0 <= k <= L(n). Sum_{k=0..L(n)} T(n,k) = A123753(n-1) for n>=1. EXAMPLE 0; 1,   0; 2,   1,  0; 3,   2,  1; 4,   3,  2,  0; 5,   4,  3,  1; 6,   5,  4,  2; 7,   6,  5,  3; 8,   7,  6,  4, 0; 9,   8,  7,  5, 1; 10,  9,  8,  6, 2; 11, 10,  9,  7, 3; 12, 11, 10,  8, 4; 13, 12, 11,  9, 5; 14, 13, 12, 10, 6; 15, 14, 13, 11, 7; MAPLE A295508_row := proc(n) local i, s, z; s := n; i := n-1; z := 1; while 0 <= i do s := s, i; i := i-z; z := z+z od; s end: seq(A295508_row(n), n=0..17); # Alternatively after formula: T := (n, k) -> `if`(k=0, n, n - 2^(k-1)): L := n -> nops(convert(n, base, 2)) - 0^n: T_row := n -> seq(T(n, k), k=0..L(n)): seq(T_row(n), n=0..17); CROSSREFS Cf. A123753. Sequence in context: A019586 A257962 A176095 * A260672 A063942 A263405 Adjacent sequences:  A295505 A295506 A295507 * A295509 A295510 A295511 KEYWORD nonn,tabf AUTHOR Peter Luschny, Nov 30 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 13 19:42 EDT 2021. Contains 342941 sequences. (Running on oeis4.)