login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295506
a(n) = Sum_{d|n} mu(n/d)*5^(d-1).
5
1, 4, 24, 120, 624, 3096, 15624, 78000, 390600, 1952496, 9765624, 48824880, 244140624, 1220687496, 6103514976, 30517500000, 152587890624, 762939059400, 3814697265624, 19073484374880, 95367431624976, 476837148437496, 2384185791015624, 11920928906172000
OFFSET
1,2
LINKS
FORMULA
a(n) = A054720(n)/5 for n > 0.
G.f.: Sum_{k>=1} mu(k)*x^k/(1 - 5*x^k). - Ilya Gutkovskiy, Oct 25 2018
MATHEMATICA
nmax = 20; Rest[CoefficientList[Series[Sum[MoebiusMu[k] * x^k / (1 - 5*x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Dec 11 2020 *)
PROG
(PARI) {a(n) = sumdiv(n, d, moebius(n/d)*5^(d-1))}
CROSSREFS
Sum_{d|n} mu(n/d)*k^(d-1): A000740 (k=2), A034741 (k=3), A295505 (k=4), this sequence (k=5).
Column k=5 of A143325.
First differences of A320089.
Cf. A054720.
Sequence in context: A270462 A273444 A049315 * A378144 A098224 A339123
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 23 2017
STATUS
approved