login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054720
Number of 5-ary sequences with primitive period n.
8
1, 5, 20, 120, 600, 3120, 15480, 78120, 390000, 1953000, 9762480, 48828120, 244124400, 1220703120, 6103437480, 30517574880, 152587500000, 762939453120, 3814695297000, 19073486328120, 95367421874400, 476837158124880, 2384185742187480, 11920928955078120
OFFSET
0,2
COMMENTS
Equivalently, output sequences with primitive period n from a simple cycling shift register.
REFERENCES
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
LINKS
FORMULA
Sum mu(d)*5^(n/d); d|n.
a(0) = 1, a(n) = n * A001692(n).
G.f.: 1 + 5 * Sum_{k>=1} mu(k) * x^k / (1 - 5*x^k). - Ilya Gutkovskiy, Apr 14 2021
MAPLE
with(numtheory):
a:= n-> `if`(n=0, 1, add(mobius(d)*5^(n/d), d=divisors(n))):
seq(a(n), n=0..30); # Alois P. Heinz, Oct 21 2012
MATHEMATICA
a[0] = 1; a[n_] := Sum[MoebiusMu[d]*5^(n/d), {d, Divisors[n]}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Mar 11 2014 *)
CROSSREFS
Column k=5 of A143324.
Sequence in context: A028944 A332710 A352743 * A374658 A208941 A209069
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 20 2000
STATUS
approved