login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054718
Number of ternary sequences with primitive period n.
9
1, 3, 6, 24, 72, 240, 696, 2184, 6480, 19656, 58800, 177144, 530640, 1594320, 4780776, 14348640, 43040160, 129140160, 387400104, 1162261464, 3486725280, 10460350992, 31380882456, 94143178824, 282428998560, 847288609200, 2541864234000, 7625597465304
OFFSET
0,2
COMMENTS
Equivalently, output sequences with primitive period n from a simple cycling shift register.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..2095 (terms 0..650 from Alois P. Heinz)
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
FORMULA
a(n) = Sum_{d|n} mu(d)*3^(n/d).
a(0) = 1, a(n) = n * A027376(n).
a(n) = 3 * A034741(n).
G.f.: 1 + 3 * Sum_{k>=1} mu(k) * x^k / (1 - 3*x^k). - Ilya Gutkovskiy, Apr 14 2021
MAPLE
with(numtheory):
a:= n-> `if`(n=0, 1, add(mobius(d)*3^(n/d), d=divisors(n))):
seq(a(n), n=0..30); # Alois P. Heinz, Oct 21 2012
MATHEMATICA
a[0] = 1; a[n_] := Sum[MoebiusMu[d]*3^(n/d), {d, Divisors[n]}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 11 2014, after Alois P. Heinz *)
PROG
(PARI) a(n) = if(n==0, 1, sumdiv(n, d, moebius(d) * 3^(n/d) )); \\ Joerg Arndt, Apr 14 2013
CROSSREFS
Column k=3 of A143324.
Sequence in context: A148655 A148656 A279300 * A132390 A080373 A363016
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 20 2000
STATUS
approved