login
A363016
a(n) is the least integer k such that the k-th, (k+1)-th, ..., (k+n-1)-th primes are congruent to 1 mod 4.
1
3, 6, 24, 77, 378, 1395, 1395, 1395, 1395, 31798, 61457, 240748, 800583, 804584, 804584, 804584, 16118548, 16138563, 16138563, 56307979, 56307979, 56307979, 56307979, 56307979, 3511121443, 3511121443, 26284355567, 26284355567, 26284355567, 118027458557, 118027458557, 118027458557, 118027458557
OFFSET
1,1
COMMENTS
a(n) is also the minimal rank where n consecutive 1's appear in A023512.
The sequence is infinite by Shiu's theorem.
LINKS
D. K. L. Shiu, Strings of Congruent Primes, J. Lond. Math. Soc. 61 (2) (2000) 359-373.
FORMULA
a(n) = A000720(A057624(n)). - Amiram Eldar, May 13 2023
EXAMPLE
For n=3, a(3) = 24 because prime(24)+1=90, prime(25)+1=98, and prime(26)+1=102 are the first 3 consecutive primes p such that p+1 is divisible by 2 and not by 4.
CROSSREFS
Cf. A363017 (3 mod 8).
Sequence in context: A054718 A132390 A080373 * A327643 A296215 A152761
KEYWORD
nonn
AUTHOR
Léo Gratien, May 13 2023
STATUS
approved