login
A363014
Cubefull numbers (A036966) with a record gap to the next cubefull number.
1
1, 8, 16, 32, 81, 128, 343, 512, 729, 864, 1024, 1331, 3456, 4096, 6912, 8192, 12167, 25000, 32768, 35937, 43904, 46656, 55296, 70304, 93312, 110592, 117649, 140608, 186624, 287496, 331776, 357911, 373248, 592704, 707281, 889056, 1000000, 1124864, 1157625, 1296000
OFFSET
1,2
COMMENTS
This sequence is infinite since the asymptotic density of the cubefull numbers is 0.
The corresponding record gaps are 7, 8, 16, 49, 47, 215, 169, 217, 135, 160, ... .
LINKS
EXAMPLE
The sequence of cubefull numbers begins with 1, 8, 16, 27, 32, 64, 81 and 125. The differences between these terms are 7, 8, 11, 5, 32, 17 and 44. The record values, 7, 8, 11, 32 and 44 occur after the cubefull numbers 1, 8, 16, 32 and 81, the first 5 terms of this sequence.
MATHEMATICA
cubQ[n_] := Min[FactorInteger[n][[;; , 2]]] > 2; seq[kmax_] := Module[{s = {}, k1 = 1, gapmax = 0, gap}, Do[If[cubQ[k], gap = k - k1; If[gap > gapmax, gapmax = gap; AppendTo[s, k1]]; k1 = k], {k, 2, kmax}]; s]; seq[10^6]
PROG
(PARI) iscubefull(n) = n==1 || vecmin(factor(n)[, 2]) > 2;
lista(kmax) = {my(gapmax = 0, gap, k1 = 1); for(k = 2, kmax, if(iscubefull(k), gap = k - k1; if(gap > gapmax, gapmax = gap; print1(k1, ", ")); k1 = k)); }
CROSSREFS
Sequence in context: A335850 A206375 A146541 * A261976 A291124 A239280
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 13 2023
STATUS
approved