OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q^2)^7 / (eta(q)^2 * eta(q^4)^3))^4 in powers of q.
Euler transform of period 4 sequence [8, -20, 8, -8, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 512 (t/i)^4 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A045820.
G.f.: Product_{k>0} (1 - x^(2*k))^28 / ((1 - x^k)^8 * (1 - x^(4*k))^12).
a(2*n) = 16 * (-1)^n * (-sigma_3(n) + sigma_3(n/4)) where sigma_3(n) is the sum of the cubes of the divisors of n if n is an integer else 0.
Convolution square of A207541.
EXAMPLE
G.f. = 1 + 8*x + 16*x^2 - 32*x^3 - 144*x^4 - 16*x^5 + 448*x^6 + 192*x^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x]^6 EllipticTheta[ 4, 0, x]^2, {x, 0, n}];
a[ n_] := SeriesCoefficient[ (QPochhammer[x^2]^7 / (QPochhammer[ x]^2 QPochhammer[ x^4]^3))^4, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^7 / (eta(x + A)^2 * eta(x^4 + A)^3))^4, n))};
(PARI) lista(nn) = {q='q+O('q^nn); Vec((eta(q^2)^7/(eta(q)^2*eta(q^4)^3))^4)} \\ Altug Alkan, Mar 21 2018
(Magma) A := Basis( ModularForms( Gamma0(16), 4), 42); A[1] + 8*A[2] + 16*A[3] - 32*A[4] - 144*A[5] - 16*A[6] + 448*A[7] + 192*A[8] - 912*A[9];
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 17 2017
STATUS
approved