login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363015
Expansion of g.f. A(x) satisfying 3 = Sum_{n=-oo..+oo} x^n * A(x)^n * (1 + x^n)^(2*n+1).
1
1, 0, 5, 13, 80, 352, 1955, 10155, 56934, 316413, 1810151, 10415443, 60776075, 357233548, 2118007035, 12637190038, 75866774437, 457815076217, 2775815358337, 16900781081347, 103294693694125, 633491925784696, 3897330320229845, 24045718580772438, 148748241343153325
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following.
(1) 3 = Sum_{n=-oo..+oo} x^n * A(x)^n * (1 + x^n)^(2*n+1).
(2) 3 = Sum_{n=-oo..+oo} x^(2*n*(n-1)) * A(x)^(-n) / (1 + x^n)^(2*n-1).
EXAMPLE
G.f.: A(x) = 1 + 5*x^2 + 13*x^3 + 80*x^4 + 352*x^5 + 1955*x^6 + 10155*x^7 + 56934*x^8 + 316413*x^9 + 1810151*x^10 + ...
such that P + Q = 3, where
P = 2 + (x*A(x))*(1+x)^3 + (x*A(x))^2*(1+x^2)^5 + (x*A(x))^3*(1+x^3)^7 + (x*A(x))^4*(1+x^4)^9 + (x*A(x))^5*(1+x^5)^11 + (x*A(x))^6*(1+x^6)^13 + ... + (x*A(x))^n*(1+x^n)^(2*n+1) + ...
Q = (1/A(x))/(1+x) + (x^2/A(x))^2/(1+x^2)^3 + (x^4/A(x))^3/(1+x^3)^5 + (x^6/A(x))^4/(1+x^4)^7 + (x^8/A(x))^5/(1+x^5)^9 + (x^10/A(x))^6/(1+x^6)^11 + ... + (x^(2*n-2)/A(x))^n/(1+x^n)^(2*n-1) + ...
Explicitly,
P = 2 + x + 4*x^2 + 9*x^3 + 45*x^4 + 176*x^5 + 948*x^6 + 4621*x^7 + 25196*x^8 + 136099*x^9 + 763772*x^10 + 4319703*x^11 + 24865914*x^12 + ...
Q = 1 - x - 4*x^2 - 9*x^3 - 45*x^4 - 176*x^5 - 948*x^6 - 4621*x^7 - 25196*x^8 - 136099*x^9 - 763772*x^10 - 4319703*x^11 - 24865914*x^12 - ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(-3 + sum(m=-#A, #A, x^m * Ser(A)^m * (1 + x^m +x*O(x^n))^(2*m+1) ), #A-1); ); A[n+1]}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A113876 A333082 A214536 * A324418 A359316 A165262
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 18 2023
STATUS
approved