

A098224


Number of primes <=10^n in which decimal digits are all distinct.


5



4, 24, 121, 631, 3160, 13399, 47349, 137859, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Partial sums of A073532.  Lekraj Beedassy, Aug 02 2008
No number with more than 10 digits can have all of its decimal digits distinct, and no number that uses all ten distinct decimal digits can be prime (because the sum of all ten decimal digits is 45 so any such number is divisible by 3). Therefore, every term in the sequence from and after a(9) is the same, i.e., 283086.  Harvey P. Dale, Dec 12 2010


LINKS

Table of n, a(n) for n=1..33.


FORMULA

a(n) = 283086 for n >= 10.


MATHEMATICA

okQ[n_]:=Max[DigitCount[n]]==1
Table[Length[Select[Prime[Range[PrimePi[10^i]]], okQ]], {i, 9}] (* Harvey P. Dale, Dec 12 2010 *)


CROSSREFS

Cf. A006880, A006879, A073532, A098226A098227.
Sequence in context: A273444 A049315 A295506 * A024049 A103455 A289715
Adjacent sequences: A098221 A098222 A098223 * A098225 A098226 A098227


KEYWORD

base,nonn


AUTHOR

Labos Elemer, Oct 26 2004


STATUS

approved



