login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318703
For any n >= 0 with binary expansion Sum_{k=0..w} b_k * 2^k, let f(n) = Sum_{k=0..w} b_k * i^k * 2^floor(k/2) (where i denotes the imaginary unit); a(n) is the imaginary part of f(n).
3
0, 0, 1, 1, 0, 0, 1, 1, -2, -2, -1, -1, -2, -2, -1, -1, 0, 0, 1, 1, 0, 0, 1, 1, -2, -2, -1, -1, -2, -2, -1, -1, 4, 4, 5, 5, 4, 4, 5, 5, 2, 2, 3, 3, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 5, 5, 2, 2, 3, 3, 2, 2, 3, 3, 0, 0, 1, 1, 0, 0, 1, 1, -2, -2, -1, -1, -2, -2, -1
OFFSET
0,9
COMMENTS
See A318702 for the real part of f and additional comments.
FORMULA
a(n) = A053985(A059906(n)).
a(2*n) = a(2*n + 1) for any n >= 0.
a(4 * k) = -2 * a(k) for any k >= 0.
MATHEMATICA
Array[Im[Total@ MapIndexed[#1*I^(First@ #2 - 1)*2^Floor[(First@ #2 - 1)/2] &, Reverse@ IntegerDigits[#, 2]]] &, 75, 0] (* Michael De Vlieger, Sep 02 2018 *)
PROG
(PARI) a(n) = my (b=Vecrev(binary(n))); imag(sum(k=1, #b, b[k] * I^(k-1) * 2^floor((k-1)/2)))
CROSSREFS
KEYWORD
sign,base
AUTHOR
Rémy Sigrist, Sep 01 2018
STATUS
approved