The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318702 For any n >= 0 with binary expansion Sum_{k=0..w} b_k * 2^k, let f(n) = Sum_{k=0..w} b_k * i^k * 2^floor(k/2) (where i denotes the imaginary unit); a(n) is the real part of f(n). 3
 0, 1, 0, 1, -2, -1, -2, -1, 0, 1, 0, 1, -2, -1, -2, -1, 4, 5, 4, 5, 2, 3, 2, 3, 4, 5, 4, 5, 2, 3, 2, 3, 0, 1, 0, 1, -2, -1, -2, -1, 0, 1, 0, 1, -2, -1, -2, -1, 4, 5, 4, 5, 2, 3, 2, 3, 4, 5, 4, 5, 2, 3, 2, 3, -8, -7, -8, -7, -10, -9, -10, -9, -8, -7, -8, -7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS See A318703 for the imaginary part of f. See A318704 for the square of the modulus of f. The function f defines a bijection from the nonnegative integers to the Gaussian integers. This sequence has similarities with A316657. LINKS Rémy Sigrist, Table of n, a(n) for n = 0..16383 Rémy Sigrist, Colored scatterplot of (a(n), A318703(n)) for n = 0..2^19-1 (where the hue is function of n) FORMULA a(n) = A053985(A059905(n)). a(4 * k) = -2 * a(k) for any k >= 0. MATHEMATICA Array[Re[Total@ MapIndexed[#1*I^(First@ #2 - 1)*2^Floor[(First@ #2 - 1)/2] &, Reverse@ IntegerDigits[#, 2]]] &, 76, 0] (* Michael De Vlieger, Sep 02 2018 *) PROG (PARI) a(n) = my (b=Vecrev(binary(n))); real(sum(k=1, #b, b[k] * I^(k-1) * 2^floor((k-1)/2))) CROSSREFS Cf. A053985, A059905, A316657, A318703, A318704. Sequence in context: A339455 A123724 A107016 * A226519 A066057 A060588 Adjacent sequences:  A318699 A318700 A318701 * A318703 A318704 A318705 KEYWORD sign,base AUTHOR Rémy Sigrist, Sep 01 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 11 13:41 EDT 2021. Contains 343791 sequences. (Running on oeis4.)