login
A107016
Number of odd terms in Zeckendorf representation of n.
8
1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 3, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 3, 4, 3, 4, 3, 2, 3, 2, 3, 4, 3, 4, 3, 2, 3, 2, 3, 4, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 3
OFFSET
1,4
COMMENTS
a(n) = A007895(n) - A107015(n).
a(A107227(n)) = 0. - Reinhard Zumkeller, May 15 2005
LINKS
Eric Weisstein's World of Mathematics, Zeckendorf Representation
EXAMPLE
n = 77 = 55+21+1 -> a(77) = #{1, 21, 55} = 3;
n = 88 = 55+21+8+3+1 -> a(88) = #{1, 3, 21, 55} = 4;
n = 99 = 89+8+2 -> a(99) = #{89} = 1.
PROG
(Haskell)
a107016 = length . filter odd . a035516_row
-- Reinhard Zumkeller, Mar 10 2013
CROSSREFS
Cf. A000045.
Cf. A035516.
Sequence in context: A318682 A339455 A123724 * A318702 A360536 A226519
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 09 2005
STATUS
approved