login
A107015
Number of even terms in Zeckendorf representation of n.
8
0, 1, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 0, 0, 1, 0
OFFSET
1,10
COMMENTS
a(n) = A007895(n) - A107016(n).
a(A107228(n)) = 0. - Reinhard Zumkeller, May 15 2005
LINKS
Eric Weisstein's World of Mathematics, Zeckendorf Representation
EXAMPLE
n = 77 = 55+21+1 -> a(77) = #{} = 0;
n = 88 = 55+21+8+3+1 -> a(88) = #{8} = 1;
n = 99 = 89+8+2 -> a(99) = #{2, 8} = 2.
PROG
(Haskell)
a107015 = length . filter even . a035516_row
-- Reinhard Zumkeller, Mar 10 2013
CROSSREFS
Cf. A000045.
Cf. A035516.
Sequence in context: A143809 A056559 A117200 * A015374 A164058 A328712
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 09 2005
STATUS
approved