login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226519
Irregular triangle read by rows: T(n,k) = Sum_{i=0..k} Legendre(i,prime(n)).
2
1, 1, 0, 1, 0, -1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, -1, -2, -1, 0, -1, 0, 1, 2, 1, 2, 1, 0, -1, 0, 1, 0, -1, -2, -1, -2, -1, 0, 1, 0, -1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 1, 0, -1, 0, 1, 0, 1, 2, 3, 4, 3, 4, 3, 4, 5, 4, 3, 4, 5, 4, 3, 4, 3, 4, 3, 2, 1, 0
OFFSET
1,9
COMMENTS
Strictly speaking, the symbol in the definition is the Legendre-Jacobi-Kronecker symbol, since the Legendre symbol is defined only for odd primes.
REFERENCES
József Beck, Inevitable randomness in discrete mathematics, University Lecture Series, 49. American Mathematical Society, Providence, RI, 2009. xii+250 pp. ISBN: 978-0-8218-4756-5; MR2543141 (2010m:60026). See page 23.
EXAMPLE
Triangle begins:
1;
1, 0;
1, 0, -1, 0;
1, 2, 1, 2, 1, 0;
1, 0, 1, 2, 3, 2, 1, 0, 1, 0;
1, 0, 1, 2, 1, 0, -1, -2, -1, 0, -1, 0;
1, 2, 1, 2, 1, 0, -1, 0, 1, 0, -1, -2, -1, -2, -1, 0;
...
MAPLE
with(numtheory);
T:=(n, k)->add(legendre(i, ithprime(n)), i=1..k);
f:=n->[seq(T(n, k), k=1..ithprime(n)-1)];
[seq(f(n), n=1..15)];
MATHEMATICA
Table[P = Prime[n]; Table[JacobiSymbol[k, P], {k, P-1}]//Accumulate, {n, 15}]// Flatten (* G. C. Greubel, Oct 05 2024 *)
PROG
(Magma)
A226519:= func< n, k | n eq 1 select k else (&+[JacobiSymbol(j, NthPrime(n)): j in [0..k]]) >;
[A226519(n, k) : k in [1..NthPrime(n)-1], n in [1..15]]; // G. C. Greubel, Oct 05 2024
(SageMath)
def A226519(n, k): return k if n==1 else sum(jacobi_symbol(j, nth_prime(n)) for j in range(k+1))
flatten([[A226519(n, k) for k in range(1, nth_prime(n))] for n in range(1, 16)]) # G. C. Greubel, Oct 05 2024
CROSSREFS
A variant of A226518, which is the main entry for this triangle.
Sequence in context: A107016 A318702 A360536 * A066057 A060588 A221167
KEYWORD
sign,tabf
AUTHOR
N. J. A. Sloane, Jun 19 2013
STATUS
approved