The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A221167 The infinite generalized Fibonacci word p^[3]. 5
0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 3, 0, 3, 0, 1, 0, 1, 0, 3, 0, 3, 2, 3, 2, 3, 0, 3, 0, 1, 0, 1, 0, 3, 0, 3, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 3, 0, 3, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
LINKS
José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012-2014.
MAPLE
# fmorph, sigma1f and sigma01f are defined in A221166
A221167 := proc(n)
sigma01f(n, 3) ;
end proc: # R. J. Mathar, Jul 09 2013
MATHEMATICA
fibi[n_, i_] := fibi[n, i] = Which[n == 0, {0}, n == 1, Append[Table[0, {j, 1, i - 1}], 1], True, Join[fibi[n - 1, i], fibi[n - 2, i]]];
fibonni[n_, i_] := fibonni[n, i] = Module[{fn, Fn}, For[fn = 0, True, fn++, Fn = fibi[fn, i]; If[Length[Fn] >= n + 1 && Length[Fn] > i + 3, Return[Fn[[n + 1]]]]]];
fmorph[n_, i_] := If[fibonni[n, i] == 0, 2, 0];
sigma1f[n_, i_] := If[n == 0, 1, 1 + Mod[Sum[fmorph[j, i], {j, 0, n - 1}], 4]];
sigma01f[n_, i_] := If[n == 0, 0, Mod[Sum[sigma1f[j, i], {j, 0, n - 1}], 4]];
a[n_] := sigma01f[n, 3]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 30 2017, after R. J. Mathar *)
CROSSREFS
Sequence in context: A226519 A066057 A060588 * A286134 A336922 A276469
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 04 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 10:39 EDT 2024. Contains 372712 sequences. (Running on oeis4.)