The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A221166 The infinite generalized Fibonacci word p^[2]. 6
 0, 1, 0, 3, 0, 3, 2, 3, 0, 3, 0, 1, 0, 1, 2, 1, 0, 1, 0, 3, 0, 1, 0, 1, 2, 1, 2, 3, 2, 1, 2, 1, 0, 1, 0, 3, 0, 1, 0, 1, 2, 1, 0, 1, 0, 3, 0, 3, 2, 3, 0, 3, 0, 1, 0, 3, 0, 3, 2, 3, 2, 1, 2, 3, 2, 3, 0, 3, 0, 1, 0, 3, 0, 3, 2, 3, 0, 3, 0, 1, 0, 1, 2, 1, 0, 1, 0, 3, 0, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Table of n, a(n) for n=0..89. José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012-2014. EXAMPLE The infinite Fibonacci word f^[2] is A003849. If we apply the morphism {1,0}->{0,2} we have 2, 0, 2, 2, 0 ,2 ... Prepending a 1 and replacing the sequence with the partial sums plus 1 (mod 4), applying operator sigma_1, we have 1, 3, 3, 1, 3, 3, 1, 1, 3, 1. Finally prepending 0 and replacing the that sequence with the partial sums (mod 4), applying operator sigma_0, we have the a(n). - R. J. Mathar, Jul 09 2013 MAPLE # fibi and fibonni defined in A221150 fmorph := proc(n, i) if fibonni(n, i) = 0 then 2; else 0 ; end if; end proc: sigma1f := proc(n, i) if n = 0 then 1; else 1 + modp(add(fmorph(j, i), j=0..n-1), 4) ; end if; end proc: sigma01f := proc(n, i) if n = 0 then 0; else modp(add(sigma1f(j, i), j=0..n-1), 4) ; end if; end proc: A221166 := proc(n) sigma01f(n, 2) ; end proc: # R. J. Mathar, Jul 09 2013 MATHEMATICA fibi[n_, i_] := fibi[n, i] = Which[n == 0, {0}, n == 1, Append[Table[0, {j, 1, i - 1}], 1], True, Join[fibi[n - 1, i], fibi[n - 2, i]]]; fibonni[n_, i_] := fibonni[n, i] = Module[{fn, Fn}, For[fn = 0, True, fn++, Fn = fibi[fn, i]; If[Length[Fn] >= n + 1 && Length[Fn] > i + 3, Return[ Fn[[n + 1]]]]]]; fmorph[n_, i_] := If[fibonni[n, i] == 0, 2, 0]; sigma1f[n_, i_] := If[n == 0, 1, 1+Mod[Sum[fmorph[j, i], {j, 0, n-1}], 4]]; sigma01f[n_, i_] := If[n == 0, 0, Mod[Sum[sigma1f[j, i], {j, 0, n-1}], 4]]; a[n_] := sigma01f[n, 2]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 21 2017, after R. J. Mathar *) CROSSREFS Cf. A221166-A221171. Sequence in context: A332715 A219107 A338498 * A004604 A246924 A274715 Adjacent sequences: A221163 A221164 A221165 * A221167 A221168 A221169 KEYWORD nonn AUTHOR N. J. A. Sloane, Jan 04 2013 EXTENSIONS Changed name from p^[1] to p^[2] because p^[1] could not be reproduced. - R. J. Mathar, Jul 09 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 16:22 EDT 2024. Contains 372840 sequences. (Running on oeis4.)