login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221166
The infinite generalized Fibonacci word p^[2].
6
0, 1, 0, 3, 0, 3, 2, 3, 0, 3, 0, 1, 0, 1, 2, 1, 0, 1, 0, 3, 0, 1, 0, 1, 2, 1, 2, 3, 2, 1, 2, 1, 0, 1, 0, 3, 0, 1, 0, 1, 2, 1, 0, 1, 0, 3, 0, 3, 2, 3, 0, 3, 0, 1, 0, 3, 0, 3, 2, 3, 2, 1, 2, 3, 2, 3, 0, 3, 0, 1, 0, 3, 0, 3, 2, 3, 0, 3, 0, 1, 0, 1, 2, 1, 0, 1, 0, 3, 0, 3
OFFSET
0,4
LINKS
José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012-2014.
EXAMPLE
The infinite Fibonacci word f^[2] is A003849. If we apply the morphism {1,0}->{0,2} we have 2, 0, 2, 2, 0 ,2 ... Prepending a 1 and replacing the sequence with the partial sums plus 1 (mod 4), applying operator sigma_1, we have 1, 3, 3, 1, 3, 3, 1, 1, 3, 1. Finally prepending 0 and replacing the that sequence with the partial sums (mod 4), applying operator sigma_0, we have the a(n). - R. J. Mathar, Jul 09 2013
MAPLE
# fibi and fibonni defined in A221150
fmorph := proc(n, i)
if fibonni(n, i) = 0 then
2;
else
0 ;
end if;
end proc:
sigma1f := proc(n, i)
if n = 0 then
1;
else
1 + modp(add(fmorph(j, i), j=0..n-1), 4) ;
end if;
end proc:
sigma01f := proc(n, i)
if n = 0 then
0;
else
modp(add(sigma1f(j, i), j=0..n-1), 4) ;
end if;
end proc:
A221166 := proc(n)
sigma01f(n, 2) ;
end proc: # R. J. Mathar, Jul 09 2013
MATHEMATICA
fibi[n_, i_] := fibi[n, i] = Which[n == 0, {0}, n == 1, Append[Table[0, {j, 1, i - 1}], 1], True, Join[fibi[n - 1, i], fibi[n - 2, i]]];
fibonni[n_, i_] := fibonni[n, i] = Module[{fn, Fn}, For[fn = 0, True, fn++, Fn = fibi[fn, i]; If[Length[Fn] >= n + 1 && Length[Fn] > i + 3, Return[ Fn[[n + 1]]]]]];
fmorph[n_, i_] := If[fibonni[n, i] == 0, 2, 0];
sigma1f[n_, i_] := If[n == 0, 1, 1+Mod[Sum[fmorph[j, i], {j, 0, n-1}], 4]];
sigma01f[n_, i_] := If[n == 0, 0, Mod[Sum[sigma1f[j, i], {j, 0, n-1}], 4]];
a[n_] := sigma01f[n, 2]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 21 2017, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 04 2013
EXTENSIONS
Changed name from p^[1] to p^[2] because p^[1] could not be reproduced. - R. J. Mathar, Jul 09 2013
STATUS
approved