OFFSET
1,10
COMMENTS
G.f. of A274714 satisfies: F(x) = x + F(x)^2 - R(A(x)^2) + sqrt(F(x)^2 - R(F(x)^2)), where R(F(x)) = x, and F(x) = Sum_{n>=1} a(n)*x^n / 2^a(n).
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..1040
FORMULA
PROG
(PARI) {a(n) = my(A=x+x^2, R=x); for(i=1, n,
R = serreverse(A + x^2*O(x^n));
A = x + A^2 - subst(R, x, A^2) + sqrt(A^2 - subst(R, x, A^2)) );
valuation(denominator(polcoeff(A, n)), 2)}
for(n=1, 80, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 08 2016
STATUS
approved