login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274715
Exponent in the power of 2 that equals the denominator in the coefficients of the g.f. described by A274714.
2
0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 0, 3, 2, 4, 0, 4, 3, 7, 1, 7, 6, 8, 4, 8, 7, 10, 6, 10, 9, 11, 5, 11, 10, 15, 9, 15, 14, 16, 12, 16, 15, 18, 14, 18, 17, 19, 14, 19, 18, 22, 17, 22, 21, 23, 19, 23, 22, 25, 21, 25, 24, 26, 19, 26, 25, 31, 24, 31, 30, 32, 28, 32, 31, 34, 30, 34, 33, 35, 30, 35, 34, 38, 33, 38, 37, 39, 35, 39, 38, 41, 37, 41, 40, 42, 36, 42, 41, 46, 40, 46, 45, 47, 43, 47, 46, 49, 45, 49, 48, 50, 45, 50, 49, 53, 48, 53, 52, 54, 50, 54, 53, 56, 52, 56, 55, 57, 49, 57, 56, 63, 55, 63, 62, 64, 60, 64, 63, 66, 62, 66, 65, 67, 62, 67, 66, 70, 65, 70, 69, 71
OFFSET
1,10
COMMENTS
G.f. of A274714 satisfies: F(x) = x + F(x)^2 - R(A(x)^2) + sqrt(F(x)^2 - R(F(x)^2)), where R(F(x)) = x, and F(x) = Sum_{n>=1} a(n)*x^n / 2^a(n).
LINKS
FORMULA
a(2^n) = 2^(n-1) - n for n>=1.
a(4*n) = A005187(n-1) for n>=1.
a(4*n-2) = A005187(n-1) for n>=1.
a(4*n-3) - a(4*n-1) = A001511(n) for n>5, where 2*n/2^A001511(n) is odd.
PROG
(PARI) {a(n) = my(A=x+x^2, R=x); for(i=1, n,
R = serreverse(A + x^2*O(x^n));
A = x + A^2 - subst(R, x, A^2) + sqrt(A^2 - subst(R, x, A^2)) );
valuation(denominator(polcoeff(A, n)), 2)}
for(n=1, 80, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 08 2016
STATUS
approved