OFFSET
1,6
COMMENTS
Apart from the first term, the same as A016035.
For n > 1, a(n) is also the number of numbers below n which are not coprime to n.
a(n) = 0 if n is prime.
x^(n - 1 - phi(n)) is congruent to x^(n - 1) mod n, if x is coprime to n, since x^phi(n) is congruent to 1 (mod n) if x is coprime to n.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
FORMULA
MATHEMATICA
Table[n - (EulerPhi[n] + 1), {n, 75}] (* Alonso del Arte, Nov 17 2012 *)
PROG
(PARI) for(n=1, 100, print1(n-1-eulerphi(n)", "))
(Magma) [(n - 1 - (EulerPhi(n))): n in [1..100]]; // Vincenzo Librandi, Jan 26 2013
CROSSREFS
KEYWORD
sign,easy
AUTHOR
V. Raman, Nov 20 2012
STATUS
approved