login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221170
The infinite generalized Fibonacci word p^[6].
5
0, 1, 0, 1, 0, 1, 0, 3, 0, 3, 0, 3, 0, 3, 2, 3, 2, 3, 2, 3, 0, 3, 0, 3, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 3, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0
OFFSET
0,8
LINKS
José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012.
MAPLE
# sigma01f implemented in A221166
A221170 := proc(n)
sigma01f(n, 6) ;
end proc: # R. J. Mathar, Jul 09 2013
MATHEMATICA
fibi[n_, i_] := fibi[n, i] = Which[n == 0, {0}, n == 1, Append[Table[0, {j, 1, i - 1}], 1], True, Join[fibi[n - 1, i], fibi[n - 2, i]]];
fibonni[n_, i_] := fibonni[n, i] = Module[{fn, Fn}, For[fn = 0, True, fn++, Fn = fibi[fn, i]; If[Length[Fn] >= n + 1 && Length[Fn] > i + 3, Return[Fn[[n + 1]]]]]];
fmorph[n_, i_] := If[fibonni[n, i] == 0, 2, 0];
sigma1f[n_, i_] := If[n == 0, 1, 1+Mod[Sum[fmorph[j, i], {j, 0, n-1}], 4]];
sigma01f[n_, i_] := If[n == 0, 0, Mod[Sum[sigma1f[j, i], {j, 0, n-1}], 4]];
a[n_] := sigma01f[n, 6];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 01 2017, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 04 2013
STATUS
approved