The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141030 A double prime irrational rotation sequence: a(n)=If[Prime[n + 1]^2 - Prime[n]*Prime[n + 2] > 0, If[Mod[Prime[n]*Sqrt[5], 1] >= 0.5, 0, 1], If[Mod[Prime[n]*Sqrt[7], 1] >= 0.5, 2, 3]]. 0
 3, 0, 3, 0, 3, 1, 2, 3, 1, 2, 1, 0, 3, 2, 1, 0, 3, 1, 0, 2, 1, 3, 2, 1, 0, 3, 1, 3, 3, 0, 3, 0, 3, 0, 3, 0, 1, 3, 1, 0, 2, 0, 3, 0, 3, 0, 0, 0, 2, 2, 1, 3, 0, 1, 0, 1, 2, 0, 1, 3, 2, 1, 1, 2, 3, 0, 2, 0, 3, 3, 2, 0, 0, 1, 2, 3, 0, 3, 2, 0, 2, 1, 3, 1, 3, 3, 0, 0, 2, 2, 1, 1, 3, 0, 3, 2, 1, 3, 1, 3 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A sequence designed to use the behavior of good and bad primes and the irrational rotation of primes square roots to give a four symbol {0,1,2,3} chaotic sequence that is deterministic. The idea is that this would simulate the behavior of the zeta zero complex part b[n]: Zeta[1/2+I*b[n]]=0; where: a(n)~b[n]*Log[Prime[n]]/(Pi^2*n). The sequence is definitely chaotic, but I don't know how successful at the simulation. LINKS FORMULA a(n)=If[Prime[n + 1]^2 - Prime[n]*Prime[n + 2] > 0, If[Mod[Prime[n]*Sqrt[5], 1] >= 0.5, 0, 1], If[Mod[Prime[n]*Sqrt[7], 1] >= 0.5, 2, 3]]. MATHEMATICA Clear[f, n, a] f[n_] = If[Prime[n + 1]^2 - Prime[n]*Prime[n + 2] > 0, If[Mod[Prime[n]*Sqrt[5], 1] >= 0.5, 0, 1], If[Mod[Prime[n]*Sqrt[7], 1] >= 0.5, 2, 3]]; a = Table[f[n], {n, 1, 100}] CROSSREFS Cf. A046869. Sequence in context: A053387 A221170 A307199 * A221168 A194084 A262281 Adjacent sequences:  A141027 A141028 A141029 * A141031 A141032 A141033 KEYWORD nonn,uned,tabl AUTHOR Roger L. Bagula, Jul 30 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 9 05:06 EDT 2021. Contains 343688 sequences. (Running on oeis4.)