login
A318701
Tetrahedral numbers that are not divisible by any smaller tetrahedral number except 1.
2
1, 4, 10, 35, 165, 286, 969, 1771, 2925, 3654, 4495, 9139, 12341, 16215, 23426, 32509, 39711, 47905, 52394, 67525, 79079, 91881, 105995, 129766, 138415, 156849, 176851, 209934, 221815, 246905, 273819, 302621, 366145, 383306, 437989, 477191, 540274, 562475, 657359, 708561, 762355, 848046, 939929, 1004731
OFFSET
1,2
LINKS
EXAMPLE
4 is a term because it is divisible by 1.
10 is a term because it is divisible by 1 but not by 4.
MAPLE
count:= 1: Res:= NULL:
for i from 2 while count < 100 do
r:= i*(i+1)*(i+2)/6;
if not ormap(t -> (r/t)::integer, [Res]) then
Res:= Res, r;
count:= count+1;
fi
od:
1, Res; # Robert Israel, Dec 28 2018
MATHEMATICA
t[n_]:=n(n+1)(n+2)/6; tQ[n_] := Module[{ans=True, tn=t[n]}, Do[If[Divisible[tn, t[i]], ans=False; Break[]], {i, 2, n-1}]; ans]; t[Select[Range[100], tQ]] (* Amiram Eldar, Nov 14 2018 *)
PROG
(PARI) t(n) = n*(n+1)*(n+2)/6;
isok(n) = my(tn=t(n)); for(i=2, n-1, if (!(tn % t(i)), return (0))); return (1);
lista(nn) = for (n=1, nn, if (isok(n), print1(t(n), ", "))); \\ Michel Marcus, Sep 29 2018
CROSSREFS
Sequence in context: A149177 A149178 A344559 * A152916 A222506 A108596
KEYWORD
nonn
AUTHOR
Torlach Rush, Aug 31 2018
EXTENSIONS
a(1) = 1 inserted by Michel Marcus, Nov 09 2018
STATUS
approved