Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Sep 02 2018 13:35:49
%S 0,0,1,1,1,0,-1,-1,-1,0,0,1,1,1,0,-1,-1,-1,3,3,4,4,4,3,2,2,2,3,3,4,4,
%T 4,3,2,2,2,3,3,4,4,4,3,2,2,2,0,0,1,1,1,0,-1,-1,-1,-3,-3,-2,-2,-2,-3,
%U -4,-4,-4,-3,-3,-2,-2,-2,-3,-4,-4,-4,-3,-3,-2,-2
%N For any n >= 0 with base-9 representation Sum_{k=0..w} d_k * 9^k, let g(n) = Sum_{k=0..w} s(d_k) * 3^k (where s(0) = 0, s(1+2*j) = i^j and s(2+2*j) = i^j * (1+i) for any j > 0, and i denotes the imaginary unit); a(n) is the imaginary part of g(n).
%C See A318705 for the real part of g and additional comments.
%H Rémy Sigrist, <a href="/A318706/b318706.txt">Table of n, a(n) for n = 0..6560</a>
%F a(9 * k) = 3 * a(k) for any k >= 0.
%o (PARI) a(n) = my (d=Vecrev(digits(n, 9))); imag(sum(k=1, #d, if (d[k], 3^(k-1)*I^floor((d[k]-1)/2)*(1+I)^((d[k]-1)%2), 0)))
%Y Cf. A318705.
%K sign,base
%O 0,19
%A _Rémy Sigrist_, Sep 01 2018