login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318710
Numerator of the coefficient of z^(-2*n) in the Stirling-like asymptotic expansion of G(z+1), where G(z) is Barnes G-function.
2
1, -1, 1447, -1559527, 366331136219, -637231027521743, 2629597771763437160249, -9781318441276304057417323, 5699253125605574587097648227233017, -13391188869589008440145241321782451523, 33214021675956829606886933935672301973543264421
OFFSET
0,3
COMMENTS
G(z+1) ~ A^(-1)*z^(-z^2/2-z/2-1/12)*exp(z^2/4)*(Gamma(z+1))^z*(Sum_{n>=0} b(n)/z^(2*n)), where A is the Glaisher-Kinkelin constant and Gamma is the gamma function.
a(n) is the numerator of b(n).
LINKS
Chao-Ping Chen, Asymptotic expansions for Barnes G-function, Journal of Number Theory 135 (2014) 36-42.
Eric Weisstein's World of Mathematics, Barnes G-Function
FORMULA
Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence
c_0 = 1, c_n = (1/(2*n)) * Sum_{k=0..n-1} B_{2*n-2*k+2}*c_k/((2*n-2*k+1)*(2*n-2*k+2)) for n > 0.
a(n) is the numerator of c_n.
EXAMPLE
G(z+1) ~ A^(-1)*z^(-z^2/2-z/2-1/12)*exp(z^2/4)*(Gamma(z+1))^z*(1 - 1/(720*z^2) + 1447/(7257600*z^4) - 1559527/(15676416000*z^6) + 366331136219/(3476402012160000*z^8) - 637231027521743/(3320318656512000000*z^10) + ... ).
CROSSREFS
Sequence in context: A181973 A226097 A023311 * A208486 A242038 A045099
KEYWORD
sign,frac
AUTHOR
Seiichi Manyama, Sep 01 2018
STATUS
approved