login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of the coefficient of z^(-2*n) in the Stirling-like asymptotic expansion of G(z+1), where G(z) is Barnes G-function.
2

%I #25 Sep 01 2018 21:38:35

%S 1,-1,1447,-1559527,366331136219,-637231027521743,

%T 2629597771763437160249,-9781318441276304057417323,

%U 5699253125605574587097648227233017,-13391188869589008440145241321782451523,33214021675956829606886933935672301973543264421

%N Numerator of the coefficient of z^(-2*n) in the Stirling-like asymptotic expansion of G(z+1), where G(z) is Barnes G-function.

%C G(z+1) ~ A^(-1)*z^(-z^2/2-z/2-1/12)*exp(z^2/4)*(Gamma(z+1))^z*(Sum_{n>=0} b(n)/z^(2*n)), where A is the Glaisher-Kinkelin constant and Gamma is the gamma function.

%C a(n) is the numerator of b(n).

%H Seiichi Manyama, <a href="/A318710/b318710.txt">Table of n, a(n) for n = 0..114</a>

%H Chao-Ping Chen, <a href="https://doi.org/10.1016/j.jnt.2013.08.007">Asymptotic expansions for Barnes G-function</a>, Journal of Number Theory 135 (2014) 36-42.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BarnesG-Function.html">Barnes G-Function</a>

%F Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence

%F c_0 = 1, c_n = (1/(2*n)) * Sum_{k=0..n-1} B_{2*n-2*k+2}*c_k/((2*n-2*k+1)*(2*n-2*k+2)) for n > 0.

%F a(n) is the numerator of c_n.

%e G(z+1) ~ A^(-1)*z^(-z^2/2-z/2-1/12)*exp(z^2/4)*(Gamma(z+1))^z*(1 - 1/(720*z^2) + 1447/(7257600*z^4) - 1559527/(15676416000*z^6) + 366331136219/(3476402012160000*z^8) - 637231027521743/(3320318656512000000*z^10) + ... ).

%Y Cf. A143475, A318711.

%K sign,frac

%O 0,3

%A _Seiichi Manyama_, Sep 01 2018