OFFSET
0,3
COMMENTS
1^(1^3)*2^(2^3)*...*n^(n^3) ~ A_3*n^(n^4/4+n^3/2+n^2/4-1/120)*exp(-n^4/16+n^/12)*(Sum_{k>=0} b(k)/n^k)^n, where A_3 is the third Bendersky constant.
a(n) is the numerator of b(n).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..106
Weiping Wang, Some asymptotic expansions on hyperfactorial functions and generalized Glaisher-Kinkelin constants, ResearchGate, 2017.
FORMULA
Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence
c_0 = 1, c_n = (-3/n) * Sum_{k=0..n-1} B_{2*n-2*k+4}*c_k/((2*n-2*k+1)*(2*n-2*k+2)*(2*n-2*k+3)*(2*n-2*k+4)) for n > 0.
a(n) is the numerator of c_n.
EXAMPLE
1^(1^3)*2^(2^3)*...*n^(n^3) ~ A_3*n^(n^4/4+n^3/2+n^2/4-1/120)*exp(-n^4/16+n^/12)*(1 - 1/(5040*n^2) + 1513/(50803200*n^4) - 127057907/(8449588224000*n^6) + 7078687551763/(442893616349184000*n^8) - 1626209947417109183/(55804595659997184000000*n^10) + ... ).
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Seiichi Manyama, Sep 01 2018
STATUS
approved