login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318713 Numerator of the coefficient of z^(-2*n) in the Stirling-like asymptotic expansion of Product_{z=1..n} z^(z^3). 3
1, -1, 1513, -127057907, 7078687551763, -1626209947417109183, 25620826938516570309695021, -67861652779316417663427293866727, 11129902336987204608540488473560076627, -2992048697379116617363098289271338606184087563, 593799837691907572156765292649932318031816367209421 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

1^(1^3)*2^(2^3)*...*n^(n^3) ~ A_3*n^(n^4/4+n^3/2+n^2/4-1/120)*exp(-n^4/16+n^/12)*(Sum_{k>=0} b(k)/n^k)^n, where A_3 is the third Bendersky constant.

a(n) is the numerator of b(n).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..106

Weiping Wang, Some asymptotic expansions on hyperfactorial functions and generalized Glaisher-Kinkelin constants, ResearchGate, 2017.

FORMULA

Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence

c_0 = 1, c_n = (-3/n) * Sum_{k=0..n-1} B_{2*n-2*k+4}*c_k/((2*n-2*k+1)*(2*n-2*k+2)*(2*n-2*k+3)*(2*n-2*k+4)) for n > 0.

a(n) is the numerator of c_n.

EXAMPLE

1^(1^3)*2^(2^3)*...*n^(n^3) ~ A_3*n^(n^4/4+n^3/2+n^2/4-1/120)*exp(-n^4/16+n^/12)*(1 - 1/(5040*n^2) + 1513/(50803200*n^4) - 127057907/(8449588224000*n^6) + 7078687551763/(442893616349184000*n^8) - 1626209947417109183/(55804595659997184000000*n^10) + ... ).

CROSSREFS

Product_{z=1..n} z^(z^m): A001163/A001164 (m=0), A143475/A143476 (m=1), A317747/A317796 (m=2), A318713/A318714 (m=3).

Cf. A243263 (A_3).

Sequence in context: A282253 A317477 A064584 * A252508 A031810 A020415

Adjacent sequences:  A318710 A318711 A318712 * A318714 A318715 A318716

KEYWORD

sign,frac

AUTHOR

Seiichi Manyama, Sep 01 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 08:25 EST 2021. Contains 349543 sequences. (Running on oeis4.)