login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318711 Denominator of the coefficient of z^(-2*n) in the Stirling-like asymptotic expansion of G(z+1), where G(z) is Barnes G-function. 2
1, 720, 7257600, 15676416000, 3476402012160000, 3320318656512000000, 4919915372473221120000000, 4632289550697863577600000000, 507464726196802564122476544000000000, 173072180302909506079665684480000000000, 49554442037561776763544469977956352000000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

G(z+1) ~ A^(-1)*z^(-z^2/2-z/2-1/12)*exp(z^2/4)*(Gamma(z+1))^z*(Sum_{n>=0} b(n)/z^(2*n)), where A is the Glaisher-Kinkelin constant and Gamma is the gamma function.

a(n) is the denominator of b(n).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..149

Chao-Ping Chen, Asymptotic expansions for Barnes G-function, Journal of Number Theory 135 (2014) 36-42.

Eric Weisstein's World of Mathematics, Barnes G-Function

FORMULA

Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence

c_0 = 1, c_n = (1/(2*n)) * Sum_{k=0..n-1} B_{2*n-2*k+2}*c_k/((2*n-2*k+1)*(2*n-2*k+2)) for n > 0.

a(n) is the denominator of c_n.

EXAMPLE

G(z+1) ~ A^(-1)*z^(-z^2/2-z/2-1/12)*exp(z^2/4)*(Gamma(z+1))^z*(1 - 1/(720*z^2) + 1447/(7257600*z^4) - 1559527/(15676416000*z^6) + 366331136219/(3476402012160000*z^8) - 637231027521743/(3320318656512000000*z^10) + ... ).

CROSSREFS

Cf. A143476, A318710.

Sequence in context: A010799 A283830 A075754 * A143476 A008979 A158044

Adjacent sequences:  A318708 A318709 A318710 * A318712 A318713 A318714

KEYWORD

nonn,frac

AUTHOR

Seiichi Manyama, Sep 01 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 30 20:19 EDT 2020. Contains 337440 sequences. (Running on oeis4.)