login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318711
Denominator of the coefficient of z^(-2*n) in the Stirling-like asymptotic expansion of G(z+1), where G(z) is Barnes G-function.
2
1, 720, 7257600, 15676416000, 3476402012160000, 3320318656512000000, 4919915372473221120000000, 4632289550697863577600000000, 507464726196802564122476544000000000, 173072180302909506079665684480000000000, 49554442037561776763544469977956352000000000000
OFFSET
0,2
COMMENTS
G(z+1) ~ A^(-1)*z^(-z^2/2-z/2-1/12)*exp(z^2/4)*(Gamma(z+1))^z*(Sum_{n>=0} b(n)/z^(2*n)), where A is the Glaisher-Kinkelin constant and Gamma is the gamma function.
a(n) is the denominator of b(n).
LINKS
Chao-Ping Chen, Asymptotic expansions for Barnes G-function, Journal of Number Theory 135 (2014) 36-42.
Eric Weisstein's World of Mathematics, Barnes G-Function
FORMULA
Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence
c_0 = 1, c_n = (1/(2*n)) * Sum_{k=0..n-1} B_{2*n-2*k+2}*c_k/((2*n-2*k+1)*(2*n-2*k+2)) for n > 0.
a(n) is the denominator of c_n.
EXAMPLE
G(z+1) ~ A^(-1)*z^(-z^2/2-z/2-1/12)*exp(z^2/4)*(Gamma(z+1))^z*(1 - 1/(720*z^2) + 1447/(7257600*z^4) - 1559527/(15676416000*z^6) + 366331136219/(3476402012160000*z^8) - 637231027521743/(3320318656512000000*z^10) + ... ).
CROSSREFS
Sequence in context: A010799 A283830 A075754 * A143476 A008979 A158044
KEYWORD
nonn,frac
AUTHOR
Seiichi Manyama, Sep 01 2018
STATUS
approved