login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338549
a(n) = n^4 * Sum_{d|n} (-1)^(n/d + 1) * mu(d) / d^4.
3
1, -17, 80, -240, 624, -1360, 2400, -3840, 6480, -10608, 14640, -19200, 28560, -40800, 49920, -61440, 83520, -110160, 130320, -149760, 192000, -248880, 279840, -307200, 390000, -485520, 524880, -576000, 707280, -848640, 923520, -983040, 1171200, -1419840, 1497600, -1555200
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>=1} mu(k) * x^k * (1 - 11*x^k + 11*x^(2*k) - x^(3*k)) / (1 + x^k)^5.
G.f. A(x) satisfies: A(x) = x * (1 - 11*x + 11*x^2 - x^3) / (1 + x)^5 - Sum_{k>=2} A(x^k).
Dirichlet g.f.: (1 - 2^(5 - s)) * zeta(s - 4) / zeta(s).
a(n) = J_4(n) if n odd, J_4(n) - 32 * J_4(n/2) if n even, where J_4 = A059377 (Jordan function J_4).
Multiplicative with a(2) = -17, a(2^e) = -15*2^(4*(e-1)) for e > 1, and a(p^e) = (p^4-1)*p^(4*(e-1)) for p > 2. - Amiram Eldar, Nov 15 2022
MATHEMATICA
Table[n^4 Sum[(-1)^(n/d + 1) MoebiusMu[d]/d^4, {d, Divisors[n]}], {n, 1, 36}]
nmax = 36; CoefficientList[Series[Sum[MoebiusMu[k] x^k (1 - 11 x^k + 11 x^(2 k) - x^(3 k))/(1 + x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
f[p_, e_] := (p^4 - 1)*p^(4*(e - 1)); f[2, 1] = -17; f[2, e_] := -15*2^(4*(e - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 15 2022 *)
PROG
(PARI) a(n) = n^4 * sumdiv(n, d, (-1)^(n/d+1)*moebius(d)/d^4); \\ Michel Marcus, Nov 02 2020
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Ilya Gutkovskiy, Nov 02 2020
STATUS
approved