login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338547
a(n) = n^2 * Sum_{d|n} (-1)^(n/d + 1) * mu(d) / d^2.
3
1, -5, 8, -12, 24, -40, 48, -48, 72, -120, 120, -96, 168, -240, 192, -192, 288, -360, 360, -288, 384, -600, 528, -384, 600, -840, 648, -576, 840, -960, 960, -768, 960, -1440, 1152, -864, 1368, -1800, 1344, -1152, 1680, -1920, 1848, -1440, 1728, -2640, 2208, -1536, 2352, -3000
OFFSET
1,2
COMMENTS
Moebius transform of A162395.
LINKS
FORMULA
G.f.: Sum_{k>=1} mu(k) * x^k * (1 - x^k) / (1 + x^k)^3.
G.f. A(x) satisfies: A(x) = x * (1 - x) / (1 + x)^3 - Sum_{k>=2} A(x^k).
Dirichlet g.f.: (1 - 2^(3 - s)) * zeta(s - 2) / zeta(s).
a(n) = J_2(n) if n odd, J_2(n) - 8 * J_2(n/2) if n even, where J_2 = A007434 (Jordan function J_2).
Multiplicative with a(2) = -5, a(2^e) = -3*2^(2*(e-1)) for e > 1, and a(p^e) = (p^2-1)*p^(2*(e-1)) for p > 2. - Amiram Eldar, Nov 15 2022
MATHEMATICA
Table[n^2 Sum[(-1)^(n/d + 1) MoebiusMu[d]/d^2, {d, Divisors[n]}], {n, 1, 50}]
nmax = 50; CoefficientList[Series[Sum[MoebiusMu[k] x^k (1 - x^k)/(1 + x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
f[p_, e_] := (p^2 - 1)*p^(2*(e - 1)); f[2, 1] = -5; f[2, e_] := -3*2^(2*(e - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 15 2022 *)
PROG
(PARI) a(n) = n^2 * sumdiv(n, d, (-1)^(n/d+1)*moebius(d)/d^2); \\ Michel Marcus, Nov 02 2020
KEYWORD
sign,mult
AUTHOR
Ilya Gutkovskiy, Nov 02 2020
STATUS
approved