The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A338547 a(n) = n^2 * Sum_{d|n} (-1)^(n/d + 1) * mu(d) / d^2. 3
 1, -5, 8, -12, 24, -40, 48, -48, 72, -120, 120, -96, 168, -240, 192, -192, 288, -360, 360, -288, 384, -600, 528, -384, 600, -840, 648, -576, 840, -960, 960, -768, 960, -1440, 1152, -864, 1368, -1800, 1344, -1152, 1680, -1920, 1848, -1440, 1728, -2640, 2208, -1536, 2352, -3000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Moebius transform of A162395. LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 FORMULA G.f.: Sum_{k>=1} mu(k) * x^k * (1 - x^k) / (1 + x^k)^3. G.f. A(x) satisfies: A(x) = x * (1 - x) / (1 + x)^3 - Sum_{k>=2} A(x^k). Dirichlet g.f.: (1 - 2^(3 - s)) * zeta(s - 2) / zeta(s). a(n) = J_2(n) if n odd, J_2(n) - 8 * J_2(n/2) if n even, where J_2 = A007434 (Jordan function J_2). Multiplicative with a(2) = -5, a(2^e) = -3*2^(2*(e-1)) for e > 1, and a(p^e) = (p^2-1)*p^(2*(e-1)) for p > 2. - Amiram Eldar, Nov 15 2022 MATHEMATICA Table[n^2 Sum[(-1)^(n/d + 1) MoebiusMu[d]/d^2, {d, Divisors[n]}], {n, 1, 50}] nmax = 50; CoefficientList[Series[Sum[MoebiusMu[k] x^k (1 - x^k)/(1 + x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] // Rest f[p_, e_] := (p^2 - 1)*p^(2*(e - 1)); f[2, 1] = -5; f[2, e_] := -3*2^(2*(e - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 15 2022 *) PROG (PARI) a(n) = n^2 * sumdiv(n, d, (-1)^(n/d+1)*moebius(d)/d^2); \\ Michel Marcus, Nov 02 2020 CROSSREFS Cf. A007434, A008683, A162395, A321543, A325596, A338548, A338549. Sequence in context: A138051 A026279 A260966 * A124434 A180930 A185729 Adjacent sequences: A338544 A338545 A338546 * A338548 A338549 A338550 KEYWORD sign,mult,changed AUTHOR Ilya Gutkovskiy, Nov 02 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 18:13 EST 2022. Contains 358431 sequences. (Running on oeis4.)