OFFSET
1,2
COMMENTS
54, 56, 87, and 95 are the smallest four numbers whose sum of divisors is the same hexagonal number (120).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1) = 1 because the sum of divisors of 1 is the hexagonal number 1.
a(2) = 5 because the sum of divisors of 5 is the hexagonal number 6.
a(3) = 8 because the sum of divisors of 8 is the hexagonal number 15.
a(4) = 12 because the sum of divisors of 12 is the hexagonal number 28.
MAPLE
isA000384 := proc(n) if not issqr(8*n+1) then false; else sqrt(8*n+1)+1 ; (% mod 4) = 0 ; end if; end proc:
for n from 1 to 4000 do if isA000384(numtheory[sigma](n)) then printf("%d, ", n) ; end if; end do: # R. J. Mathar, Sep 26 2010
MATHEMATICA
hnos=Table[n (2n-1), {n, 500}]; okQ[n_]:=Module[{ds=DivisorSigma[1, n]}, MemberQ[hnos, ds]] Select[Range[5000], okQ] (* Harvey P. Dale, Sep 26 2010 *)
PROG
(PARI) is(n)=ispolygonal(sigma(n), 6) \\ Jason Yuen, Oct 14 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Sep 26 2010
EXTENSIONS
Corrected and extended by several authors, Sep 27 2010
STATUS
approved